A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Resting metabolic rate and skeletal muscle SERCA and Na /K ATPase activities are not affected by fish oil supplementation in healthy older adults. | LitMetric

Omega-3 polyunsaturated fatty acids (PUFAs) have unique properties purported to influence several aspects of metabolism, including energy expenditure and protein function. Supplementing with n-3 PUFAs may increase whole-body resting metabolic rate (RMR), by enhancing Na /K ATPase (NKA) activity and reducing the efficiency of sarcoplasmic reticulum (SR) Ca ATPase (SERCA) activity by inducing a Ca leak-pump cycle. The purpose of this study was to examine the effects of fish oil (FO) on RMR, substrate oxidation, and skeletal muscle SERCA and NKA pump function in healthy older individuals. Subjects (n = 16 females; n = 8 males; 65 ± 1 years) were randomly assigned into groups supplemented with either olive oil (OO) (5 g/day) or FO (5 g/day) containing 2 g/day eicosapentaenoic acid and 1 g/day docosahexaenoic acid for 12 weeks. Participants visited the laboratory for RMR and substrate oxidation measurements after an overnight fast at weeks 0 and 12. Skeletal muscle biopsies were taken during weeks 0 and 12 for analysis of NKA and SERCA function and protein content. There was a main effect of time with decrease in RMR (5%) and fat oxidation (18%) in both the supplementation groups. The kinetic parameters of SERCA and NKA maximal activity, as well as the expression of SR and NKA proteins, were not affected after OO and FO supplementation. In conclusion, these results suggest that FO supplementation is not effective in altering RMR, substrate oxidation, and skeletal muscle SERCA and NKA protein levels and activities, in healthy older men and women.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7186565PMC
http://dx.doi.org/10.14814/phy2.14408DOI Listing

Publication Analysis

Top Keywords

skeletal muscle
16
muscle serca
12
healthy older
12
rmr substrate
12
substrate oxidation
12
serca nka
12
resting metabolic
8
metabolic rate
8
fish oil
8
oxidation skeletal
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!