Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Electronic textiles may revolutionize many fields, such as communication, health care and artificial intelligence. To date, unfortunately, computing with them is not yet possible. Memristors are compatible with the interwoven structure and manufacturing process in textiles because of its two-terminal crossbar configuration. However, it remains a challenge to realize textile memristors owing to the difficulties in designing advanced memristive materials and achieving high-quality active layers on fiber electrodes. Herein we report a robust textile memristor based on an electrophoretic-deposited active layer of deoxyribonucleic acid (DNA) on fiber electrodes. The unique architecture and orientation of DNA molecules with the incorporation of Ag nanoparticles offer the best-in-class performances, e.g., both ultra-low operation voltage of 0.3 V and power consumption of 100 pW and high switching speed of 20 ns. Fundamental logic calculations such as implication and NAND are demonstrated as functions of textile chips, and it has been thus integrated with power-supplying and light emitting modules to demonstrate an all-fabric information processing system.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/anie.202004333 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!