A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Robust DNA-Bridged Memristor for Textile Chips. | LitMetric

Robust DNA-Bridged Memristor for Textile Chips.

Angew Chem Int Ed Engl

State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, and Laboratory of Advanced Materials, Fudan University, Shanghai, 200438, China.

Published: July 2020

Electronic textiles may revolutionize many fields, such as communication, health care and artificial intelligence. To date, unfortunately, computing with them is not yet possible. Memristors are compatible with the interwoven structure and manufacturing process in textiles because of its two-terminal crossbar configuration. However, it remains a challenge to realize textile memristors owing to the difficulties in designing advanced memristive materials and achieving high-quality active layers on fiber electrodes. Herein we report a robust textile memristor based on an electrophoretic-deposited active layer of deoxyribonucleic acid (DNA) on fiber electrodes. The unique architecture and orientation of DNA molecules with the incorporation of Ag nanoparticles offer the best-in-class performances, e.g., both ultra-low operation voltage of 0.3 V and power consumption of 100 pW and high switching speed of 20 ns. Fundamental logic calculations such as implication and NAND are demonstrated as functions of textile chips, and it has been thus integrated with power-supplying and light emitting modules to demonstrate an all-fabric information processing system.

Download full-text PDF

Source
http://dx.doi.org/10.1002/anie.202004333DOI Listing

Publication Analysis

Top Keywords

textile chips
8
fiber electrodes
8
robust dna-bridged
4
dna-bridged memristor
4
textile
4
memristor textile
4
chips electronic
4
electronic textiles
4
textiles revolutionize
4
revolutionize fields
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!