The current SARS-CoV-2 pandemic is wreaking havoc throughout the world and has rapidly become a global health emergency. A central question concerning COVID-19 is why some individuals become sick and others not. Many have pointed already at variation in risk factors between individuals. However, the variable outcome of SARS-CoV-2 infections may, at least in part, be due also to differences between the viral subspecies with which individuals are infected. A more pertinent question is how we are to overcome the current pandemic. A vaccine against SARS-CoV-2 would offer significant relief, although vaccine developers have warned that design, testing and production of vaccines may take a year if not longer. Vaccines are based on a handful of different designs (i), but the earliest vaccines were based on the live, attenuated virus. As has been the case for other viruses during earlier pandemics, SARS-CoV-2 will mutate and may naturally attenuate over time (ii). What makes the current pandemic unique is that, thanks to state-of-the-art nucleic acid sequencing technologies, we can follow in detail how SARS-CoV-2 evolves while it spreads. We argue that knowledge of naturally emerging attenuated SARS-CoV-2 variants across the globe should be of key interest in our fight against the pandemic.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7267670 | PMC |
http://dx.doi.org/10.1111/1462-2920.15039 | DOI Listing |
Pathology
December 2024
Department of Biomedical Science, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia.
Viral infections of the central nervous system (CNS) have been emerging and re-emerging worldwide, and the Australasia region has not been spared. Enterovirus A71 and enterovirus D68, both human enteroviruses, are likely to replace the soon-to-be eradicated poliovirus to cause global outbreaks associated with neurological disease. Although prevalent elsewhere, the newly emergent orthoflavivirus, Japanese encephalitis virus (genotype IV), caused human infections in Australia in 2021, and almost certainly will continue to do so because of spillovers from the natural animal host-vector life cycle endemic in the country.
View Article and Find Full Text PDFInt J Mol Sci
January 2025
Department of Pathology, University of Veterinary Medicine Hannover, 30559 Hannover, Germany.
Respiratory viral infections continue to cause pandemic and epidemic outbreaks in humans and animals. Under steady-state conditions, alveolar macrophages (AlvMϕ) fulfill a multitude of tasks in order to maintain tissue homeostasis. Due to their anatomic localization within the deep lung, AlvMϕ are prone to detect and react to inhaled viruses and thus play a role in the early pathogenesis of several respiratory viral infections.
View Article and Find Full Text PDFSci Rep
January 2025
Rad. Eng. Dept., National Center for Radiation Research and Technology (NCRRT), Egyptian Atomic Energy Authority (EAEA), Cairo, Egypt.
COVID-19, caused by the SARS-CoV-2 coronavirus, has spread to more than 200 countries, affecting millions, costing billions, and claiming nearly 2 million lives since late 2019. This highly contagious disease can easily overwhelm healthcare systems if not managed promptly. The current diagnostic method, Molecular diagnosis, is slow and has low sensitivity.
View Article and Find Full Text PDFCoronavirus disease 2019 (COVID-19) poses significant risks for solid organ transplant recipients, who have atypical but poorly characterized immune responses to infection. We aim to understand the host immunologic and microbial features of COVID-19 in transplant recipients by leveraging a prospective multicenter cohort of 86 transplant recipients age- and sex-matched with 172 non-transplant controls. We find that transplant recipients have higher nasal SARS-CoV-2 viral abundance and impaired viral clearance, and lower anti-spike IgG levels.
View Article and Find Full Text PDFJ Geriatr Oncol
January 2025
Ageing, Cancer and Disparities Research Unit, Department of Precision Health, Luxembourg Institute of Health, 1A-B, rue Thomas Edison, 1445 Strassen, Luxembourg. Electronic address:
Introduction: The number of new cancer cases among older adults is rising, yet their social support needs remain unmet due to diminishing social networks with age. Since the COVID-19 pandemic, online technologies have provided increased opportunities for social support for this demographic via digital platforms such as online peer support groups, online communities, and chat rooms. This scoping review explores the current state of the use of online social support for older adults with cancer.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!