Water is an important component of bone and plays a key role in its mechanical and structural integrity. Water molecules in bone are present in different locations, including loosely or tightly bound to the matrix and/or mineral (biological apatite) phases. Identification of water location and interactions with matrix components impact bone function but have been challenging to assess. Here, we used near infrared (NIR) spectroscopy to identify loosely and tightly bound water present in cortical bone. In hydrated samples, NIR spectra have two primary water absorption bands at frequencies of ∼5200 and 7000 cm. Using lyophilization and hydrogen-deuterium exchange assays, we showed that these absorption bands are primarily associated with loosely bound bone water. Using further demineralization assays, thermal denaturation, and comparison to standards, we found that these absorption bands have underlying components associated with water molecules tightly bound to bone. In dehydrated samples, the peak at ∼5200 cm was assigned to a combination of water tightly bound to collagen and to mineral, whereas the peak at 7000 cm was exclusively associated with tightly bound mineral water. We also found significant positive correlations between the NIR mineral absorption bands and the mineral content as determined by an established mid infrared spectroscopic parameter, phosphate/amide I. Moreover, the NIR water data showed correlation trends with tissue mineral density (TMD) in cortical bone tissues. These observations reveal the ability of NIR spectroscopy to non-destructively identify loosely and tightly bound water in bone, which could have further applications in biomineralization and biomedical studies.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7301914PMC
http://dx.doi.org/10.1039/c9an02491cDOI Listing

Publication Analysis

Top Keywords

tightly bound
28
loosely tightly
16
absorption bands
16
cortical bone
12
water
12
bone
9
infrared spectroscopic
8
bound
8
bone water
8
water molecules
8

Similar Publications

The NMR signals from protein sidechains are rich in information about intra- and inter-molecular interactions, but their detection can be complicated due to spectral overlap as well as conformational and hydrogen exchange. In this work, we demonstrate a protocol for multi-dimensional solid-state NMR spectral editing of signals from basic sidechains based on Hadamard matrix encoding. The Hadamard method acquires multi-dimensional experiments in such a way that both the backbone and under-sampled sidechain signals can be decoded for unambiguous editing in the N spectral frequency dimension.

View Article and Find Full Text PDF

Extracellular polymeric substances (EPS) are well-acknowledged to accelerate microalgal biofilm formation, yet specific role of stratified EPS is unknown. Bacterial biofilm stratified EPS could enrich phosphorus, whether microalgal biofilm stratified EPS could also realize phosphorus or nitrogen enrichment remains unclarified. This study investigated microalgae dominant biofilm growth characteristics and nutrients removal via inoculating microalgae and stratified bacterial EPS at various microalgae:bacteria ratios.

View Article and Find Full Text PDF

Overlooked role of extracellular polymeric substances in antibiotic-resistance gene transfer within microalgae-bacteria system.

J Hazard Mater

January 2025

State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, Heilongjiang 150090, China. Electronic address:

Controlling the spread of antibiotic-resistance genes (ARGs) under antibiotic stress has become an increasingly urgent issue. Microalgae possess the capability to remove antibiotics while concurrently inhibiting ARGs. Microalgae-bacteria systems can produce significant quantities of extracellular polymeric substances (EPS).

View Article and Find Full Text PDF

The Cry1Fa insecticidal protein from (Bt) was expressed on the surface of (Bs) spores to create transgenic Bs spores referred to as Spore-Cry1Fa. Cry1Fa, along with its leader sequence, was connected to the carboxyl end of a Bs spore outercoat protein, CotC, through a flexible linker. The Arg-27 residue of the Cry1Fa protein was mutated to Leu to prevent detachment from the spores due to protease digestion.

View Article and Find Full Text PDF

The inhibition of anammox system under Cu stress and mechanisms of biochar-mediated recovery.

J Hazard Mater

January 2025

School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, PR China; Jiangsu Collaborative Innovation Center of Technology and Material of Water Treatment, Suzhou University of Science and Technology, Suzhou 215009, PR China. Electronic address:

Copper (Cu)-containing wastewater has proven difficult to effectively treat using the anammox process. In this study, the nitrogen removal efficiency (NRE), sludge characteristics, microbial community and recovery mechanisms of biochar-mediated anammox under Cu stress were elucidated. At a Custress of 5 mg/L, a 73.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!