AI Article Synopsis

Article Abstract

Neuronal networks have fluctuating characteristics, unlike the stable characteristics seen in computers. The underlying mechanisms that drive reliable communication among neuronal networks and their ability to perform intelligible tasks remain unknown. Recently, in an attempt to resolve this issue, we showed that stimulated neurons communicate spikes that propagate temporally, in the form of spike trains. We named this phenomenon "". In these previous studies, using neural networks cultured from rat hippocampal neurons, we found that multiple neurons, , 3 neurons, correlate to identify various spike wave propagations in a cultured neuronal network. Specifically, the number of in the neuronal network increased through correlation of spike trains between current and adjacent neurons. Although we previously obtained similar findings through stimulation, here we report these observations on a physiological level. Considering that individual spike wave propagation corresponds to individual communication, a correlation between some adjacent neurons to improve the quality of communication classification in a neuronal network, similar to a diversity antenna, which is used to improve the quality of communication in artificial data communication systems, is suggested.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7181895PMC
http://dx.doi.org/10.3934/Neuroscience.2018.1.18DOI Listing

Publication Analysis

Top Keywords

neuronal network
16
adjacent neurons
12
cultured neuronal
8
neuronal networks
8
spike trains
8
spike wave
8
improve quality
8
quality communication
8
neurons
7
neuronal
6

Similar Publications

Background: Observation, execution, and imitation of target actions based on mirror neuron network (MNN) have become common physiotherapy strategies. Electrical stimulation (ES) is a common intervention to improve muscle strength and motor control in rehabilitation treatments. It is possible to enhance MNN's activation by combining motor execution (ME) and motor imitation (MI) with ES simultaneously.

View Article and Find Full Text PDF

The Brain's Aging Resting State Functional Connectivity.

J Integr Neurosci

January 2025

Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA.

Resting state networks (RSNs) of the brain are characterized as correlated spontaneous time-varying fluctuations in the absence of goal-directed tasks. These networks can be local or large-scale spanning the brain. The study of the spatiotemporal properties of such networks has helped understand the brain's fundamental functional organization under healthy and diseased states.

View Article and Find Full Text PDF

A water extract of the Ayurvedic plant (L.) Urban, family Apiaceae (CAW), improves cognitive function in mouse models of aging and Alzheimer's disease and affects dendritic arborization, mitochondrial activity, and oxidative stress in mouse primary neurons. Triterpenes (TT) and caffeoylquinic acids (CQA) are constituents associated with these bioactivities of CAW, although little is known about how interactions between these compounds contribute to the plant's therapeutic benefit.

View Article and Find Full Text PDF

Parkinson's disease (PD) is a neurodegenerative disorder characterized by dopaminergic neuron degeneration and α-synuclein (α-syn) aggregation. Lipid metabolism dysfunction may contribute to PD progression. This study aims to identify lipid metabolism-related genes (LMGs) associated with PD using an integrative transcriptomic analysis of microarray and single-cell RNA sequencing (scRNA-seq) datasets from patients with PD and healthy controls.

View Article and Find Full Text PDF

Transcriptomic Evidence Reveals the Dysfunctional Mechanism of Synaptic Plasticity Control in ASD.

Genes (Basel)

December 2024

Institute for Complex Systems and Mathematical Biology, King's College, University of Aberdeen, Old Aberdeen AB24 3UE, UK.

Background/objectives: A prominent endophenotype in Autism Spectrum Disorder (ASD) is the synaptic plasticity dysfunction, yet the molecular mechanism remains elusive. As a prototype, we investigate the postsynaptic signal transduction network in glutamatergic neurons and integrate single-cell nucleus transcriptomics data from the Prefrontal Cortex (PFC) to unveil the malfunction of translation control.

Methods: We devise an innovative and highly dependable pipeline to transform our acquired signal transduction network into an mRNA Signaling-Regulatory Network (mSiReN) and analyze it at the RNA level.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!