Covid-19 pandemic by the "real-time" monitoring: the Tunisian case and lessons for global epidemics in the context of 3PM strategies.

EPMA J

Predictive, Preventive and Personalised (3P) Medicine, Department of Radiation Oncology, Friedrich-Wilhelms-University Bonn, Bonn, Germany.

Published: June 2020

Covid-19 is neither the first nor the last viral epidemic which societies around the world are, were and will be affected by. Which lessons should be taken from the current pandemic situation? The Covid-19 disease is still not well characterised, and many research teams all over the world are working on prediction of the epidemic scenario, protective measures to populations and sub-populations, therapeutic and vaccination issues, amongst others. Contextually, countries with currently low numbers of Covid-19-infected individuals such as Tunisia are intended to take lessons from those countries which already reached the exponential phase of the infection distribution as well as from those which have the exponential phase behind them and record a minor number of new cases such as China. To this end, in Tunisia, the pandemic wave has started with a significant delay compared with Europe, the main economic partner of the country. In this paper, we do analyse the current pandemic situation in this country by studying the infection evolution and considering potential protective strategies to prevent a pandemic scenario. The model is predictive based on a large number of undetected Covid-19 cases that is particularly true for some country regions such as Sfax. Infection distribution and mortality rate analysis demonstrate a highly heterogeneous picture over the country. Qualitative and quantitative comparative analysis leads to a conclusion that the reliable "real-time" monitoring based on the randomised laboratory tests is the optimal predictive strategy to create the most effective evidence-based preventive measures. In contrast, lack of tests may lead to incorrect political decisions causing either unnecessary over-protection of the population that is risky for a long-term economic recession, or under-protection of the population leading to a post-containment pandemic rebound. Recommendations are provided in the context of advanced predictive, preventive and personalised (3P) medical approach.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7182506PMC
http://dx.doi.org/10.1007/s13167-020-00207-0DOI Listing

Publication Analysis

Top Keywords

"real-time" monitoring
8
current pandemic
8
exponential phase
8
infection distribution
8
pandemic
5
covid-19
4
covid-19 pandemic
4
pandemic "real-time"
4
monitoring tunisian
4
tunisian case
4

Similar Publications

Objective: Cancer remains a leading cause of morbidity and mortality globally, with India experiencing a significant cancer burden. Effective population-based cancer screening is crucial for early detection and reduction of cancer-related deaths. This study aims to develop a mobile application-based Cancer Screening and Surveillance System (CSMS) to enhance the efficiency and effectiveness of population-based cancer screening by community health workers (CHWs).

View Article and Find Full Text PDF

Arbuscular mycorrhizal (AM) fungi engage in symbiotic relationships with plants, influencing their phosphate (Pi) uptake pathways, metabolism, and root cell physiology. Despite the significant role of Pi, its distribution and response dynamics in mycorrhizal roots remain largely unexplored. While traditional techniques for Pi measurement have shed some light on this, real-time cellular-level monitoring has been a challenge.

View Article and Find Full Text PDF

Seizure detection devices (SDDs) offer promising technological advancements in epilepsy management, providing real-time seizure monitoring and alerts for patients and caregivers. This critical review explores user perspectives and experiences with SDDs to better understand factors influencing their adoption and sustained use. An electronic literature search identified 34 relevant studies addressing common themes such as usability, motivation, comfort, accuracy, barriers, and the financial burden of these devices.

View Article and Find Full Text PDF

An Au-Ag@Au fiber surface plasmon resonance sensor for highly sensitive detection of fluoroquinolone residues.

Analyst

January 2025

Tianjin Key Laboratory for Marine Environmental Research and Service, School of Marine Science and Technology, Tianjin University, Tianjin 300072, PR China.

Antibiotic residue detection plays an important role in protecting human health, but real-time, rapid, and highly sensitive detection is still challenging. Herein, gold and silver nanoparticles (Au-Ag NPs) were grown on the surface of optical fibers and a 50 nm thick gold film was deposited on the sensor's surface to fabricate the Au-Ag@Au fiber SPR sensor. The sensitivity of the sensor reached 3512 nm per RIU in the refractive index range of 1.

View Article and Find Full Text PDF

Polymer-Layered Optical Wearable (PLOW) for Healthcare Applications: Temperature and Stretching Monitoring.

ACS Appl Mater Interfaces

January 2025

Nanophotonics and Plasmonics Laboratory, School of Basic Sciences, Indian Institute of Technology Bhubaneswar, Bhubaneswar, Odisha 752050, India.

Thermal and stretching characteristics are crucial variables in healthcare, robotics, and human-machine interaction applications. Here, we present a single-mode fiber-based, balloon-shaped, single- and dual polymer-layered optical wearable (PLOW) system that can sense both temperature and stretching. These two types of PLOWs are compared in terms of their detection performance across all criteria.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!