Effect of Leaf Extract on Glucose Metabolism in HepG2, CRI-D2 and C2C12 Cell Lines.

Diabetes Metab Syndr Obes

Metabolic Disorders Research Center, Department of Biochemistry and Biophysics, Gorgan Faculty of Medicine, Golestan University Medical Sciences, Gorgan, Iran.

Published: April 2020

Introduction: The aim of this study was to assess the effects of on glucose metabolism in HepG2, CRI-D2 and C2C12 cell lines.

Materials And Methods: was collected in Golestan province, Iran. Three different cell lines HepG2 (human liver cell), CRI-D2 (mice pancreatic cell) and C2C12 (rat myoblast) were used for cell culture experiments. Cell viability was measured using MTT assay. Cells were treated with various concentrations of the extract (6.25-400 μg/mL) and then the extracellular glucose level and intracellular glycogen content were measured using colorimetric methods. The insulin level of the culture medium was measured using the ELISA method.

Results: Our findings showed that extract enhances glucose uptake and consumption by all three cell lines. The extract exposure also elevated cellular glycogen content in HepG2 and C2C12 cells (for 200 and 100 μg/mL) significantly. We found a significant increase in glucose uptake and consequently higher stimulation of insulin secretion in CRI-D2 cell pancreatic cells treated with extract.

Conclusion: The appears to activate glucose uptake and cellular glycogen synthesis probably by activating the glycogenesis or inhibition of glycogenolysis pathways. The extract enhances insulin secretion in the pancreatic cells by increased glucose uptake.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7166088PMC
http://dx.doi.org/10.2147/DMSO.S244850DOI Listing

Publication Analysis

Top Keywords

glucose uptake
16
cell lines
12
cell
9
glucose metabolism
8
metabolism hepg2
8
hepg2 cri-d2
8
cri-d2 c2c12
8
c2c12 cell
8
three cell
8
cells treated
8

Similar Publications

Quercetin (QE), a particular flavonoid, is well known for its medicinal effects, including anti-oxidant, hypoglycemic, and anti-inflammatory effects. In this review, the findings of QE effects on diabetes STZinduced, alloxan-induced, and its complications have been summarized with a particular focus on in vitro, in vivo, and clinical trials. Consequently, QE mediates several mechanisms, including ameliorating tumor necrosis factor (TNF)-α, nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB), interleukin (IL)-1β, IL-8, and IL-10 expression, increasing insulin glucose uptake to inhibit insulin resistance.

View Article and Find Full Text PDF

Purpose: Colorectal cancer (CRC) is the second leading cause of cancer-related deaths worldwide. Oxaliplatin (OXA) is currently the primary chemotherapeutic agent for CRC, but its efficacy is limited by the tumor microenvironment (TME). Here, we present a combined approach of chemotherapy and TME modulation for CRC treatment.

View Article and Find Full Text PDF

LINC01224 promotes the Warburg effect in gastric cancer by activating the miR-486-5p/PI3K axis.

In Vitro Cell Dev Biol Anim

January 2025

Gastroenterology Section, Medical Center of Digestive Disease, Zhuzhou Hospital Affiliated to Xiangya School of Medicine, Central South University, Zhuzhou, China.

The Warburg effect, a common feature of solid tumors, rewires the metabolism and promotes growth, survival, proliferation, and long-term maintenance in gastric cancer (GC). We performed in vitro and in vivo studies of the pathogenesis of GC to investigate the effects and mechanism of LINC01224 in this cancer. qRT-PCR was used to measure the expression of LINC01224 or miR-486-5p in GC cells, and the expression of LINC01224 in GC tissues by FISH (Fluorescence in situ hybridization) analysis was evaluated.

View Article and Find Full Text PDF

Dual-driven biodegradable nanomotors for enhanced cellular uptake.

J Mater Chem B

January 2025

Bio-Organic Chemistry, Departments of Biomedical Engineering and Chemical Engineering & Chemistry, Institute for Complex Molecular Systems, Eindhoven University of Technology, 5600 MB Eindhoven, The Netherlands.

Hybrid nano-sized motors with navigation and self-actuation capabilities have emerged as promising nanocarriers for a wide range of delivery, sensing, and diagnostic applications due to their unique ability to achieve controllable locomotion within a complex biological environment such as tissue. However, most current nanomotors typically operate using a single driving mode, whereas propulsion induced by both external and local stimuli could be more beneficial to achieve efficient motility in a biomedical setting. In this work, we present a hybrid nanomotor by functionalizing biodegradable stomatocytes with platinum nanoparticles (Pt NPs).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!