Detection of micropollutants such as steroid hormones occurring in the aquatic environment at concentrations between ng/L and µg/L remains a major challenge, in particular when treatment efficiency is to be evaluated. Steroid hormones are typically analysed using mass-spectrometry methods, requiring pre-concentration and/or derivatisation procedures to achieve required detection limits. Free of sample preparation steps, the use of radiolabelled contaminants with liquid scintillation counting is limited to single-compound systems and require a separation of hormone mixtures before detection. In this work, a method was developed coupling ultra-high-pressure liquid chromatography (UHPLC) with flow scintillation analysis (FSA) for separation and detection of radiolabelled estrone, 17ß-estradiol, testosterone and progesterone. Adjustment of the flow rate of scintillation liquid and UHPLC mobile phase, gradient time, column temperature, and injection volume allowed the separation of steroid hormones and degradation products. The limit-of-detection (LOD = 1.5-2.4 ng/L) and limit-of-quantification (LOQ = 3.4-4.3 ng/L) for steroid hormones were comparable with the current state-of-the-art technique (LC-MS/MS) for non-derivatised compounds. Although the method cannot be applied to real water samples (unless spiked with radiotracers), it serves as a useful tool for the development of water treatment technologies at laboratory scale as demonstrated via: i) adsorption on polymer-based spherical activated carbon, ii) retention in nanofiltration, iii) photodegradation using a photocatalytic membrane.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7184612PMC
http://dx.doi.org/10.1038/s41598-020-63697-yDOI Listing

Publication Analysis

Top Keywords

steroid hormones
20
liquid chromatography
8
flow scintillation
8
scintillation analysis
8
detection
5
steroid
5
hormones
5
separation
4
separation degradation
4
degradation detection
4

Similar Publications

Background: Lowering barometric pressure (LP) can exacerbate neuropathic pain. However, animal studies in this field are limited to a few conditions. Furthermore, although sympathetic involvement has been reported as a possible mechanism, whether the sympathetic nervous system is involved in the hypothalamic-pituitary-adrenal (HPA) axis remains unknown.

View Article and Find Full Text PDF

Serum metabolites and risk of aortic dissection: a two-sample Mendelian randomization study.

Indian J Thorac Cardiovasc Surg

February 2025

Department of Cardiology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230001 Anhui China.

Purpose: Acute aortic dissection is a serious cardiovascular emergency with a high mortality rate. Its pathogenesis is complex and remains unclear. This study aimed to assess the connection between the levels of genetically predicted circulating metabolites and the risk of aortic dissection.

View Article and Find Full Text PDF

Background: Sex steroid hormones are critical for maintaining pregnancy and optimal fetal development. Air pollutants are potential endocrine disruptors that may disturb sex steroidogenesis during pregnancy, potentially leading to adverse health outcomes.

Methods: In the Environmental influences on Child Health Outcomes Understanding Pregnancy Signals and Infant Development pregnancy cohort (Rochester, NY), sex steroid concentrations were collected at study visits in early-, mid-, and late-pregnancy in 299 participants.

View Article and Find Full Text PDF

Background: For severe systemic rheumatic diseases (SRDs), therapeutic plasma exchange (TPE) may be applied as a rescue therapy; it usually combined with intravenous immunoglobulin (IVIG) or intravenous methylprednisolone pulse (IVMP) in severe SRDs. However, the necessity of this combination treatment strategy in SRDs remains uncertain.

Objective: This retrospective study aimed to evaluate the effectiveness of TPE alone versus TPE combined with IVIG/IVMP in treating severe SRDs.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!