Microscopies have become pillars of our characterization tools to observe biological systems and assemblies. Correlative and synchronous use of different microscopies relies on the fundamental assumption of non-interference during images acquisitions. In this work, by exploring the correlative use of Atomic Force Microscopy and confocal-Fluorescence-Lifetime Imaging Microscopy (AFM-FLIM), we quantify cross-talk effects occurring during synchronous acquisition. We characterize and minimize optomechanical forces on different AFM cantilevers interfering with normal AFM operation as well as spurious luminescence from the tip and cantilever affecting time-resolved fluorescence detection. By defining non-interfering experimental imaging parameters, we show accurate real-time acquisition and two-dimensional mapping of interaction force, fluorescence lifetime and intensity characterizing morphology (AFM) and local viscosity (FLIM) of gel and fluid phases separation of supported lipid model membranes. Finally, as proof of principle by means of synchronous force and fluorescence spectroscopies, we precisely tune the lifetime of a fluorescent nanodiamond positioned on the AFM tip by controlling its distance from a metallic surface. This opens up a novel pathway of quench sensing to image soft biological samples such as membranes since it does not require tip-sample mechanical contact in contrast with conventional AFM in liquid.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7184616 | PMC |
http://dx.doi.org/10.1038/s41598-020-62529-3 | DOI Listing |
Environ Int
January 2025
Institute of Organic Contaminant Control and Soil Remediation, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China. Electronic address:
Enzymatic proteolysis is the key process to produce bioavailable nitrogen in natural terrestrial and aquatic ecosystems for microorganisms and plants. However, little is known on how protein degradation is influenced by organic contaminants. As we known, the overuse of organophosphate esters (OPEs) has caused serious pollution in soil, water, and sediment.
View Article and Find Full Text PDFFood Chem
December 2024
College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China; Chongqing Research Institute, Harbin Institute of Technology, Chongqing 401135, China. Electronic address:
Protein fibrillation has great potential for enhancing the emulsification, foaming, and gelling properties of proteins. However, its effects on protein film-forming properties are less well understood. In this study, soy protein isolate (SPI) was subjected to fibrillation at pH 2.
View Article and Find Full Text PDFBiomacromolecules
January 2025
Department of Chemistry and Material Science, Langfang Normal University, Langfang, Hebei 065000, P.R. China.
Green separation of protein (e.g., bovine serum albumin (BSA)) by low-melting mixture solvents (LoMMSs) depends on the underlying mechanism between BSA and LoMMSs.
View Article and Find Full Text PDFJ Med Life
November 2024
Biophysics and Cellular Biotechnology Department, Carol Davila University of Medicine and Pharmacy, Bucharest, Romania.
Optical tweezers, which leverage the forces exerted by radiation pressure, have emerged as a pivotal technique for precisely manipulating and analyzing microscopic particles. Since Arthur Ashkin's ground-breaking work in the 1970s and the subsequent development of the single-beam optical trap in 1986, the capabilities of optical tweezers have expanded significantly, enabling the intricate manipulation of biological specimens at the micro- and nanoscale. This review elucidates the foundational principles of optical trapping and their extensive applications in the biomedical sciences.
View Article and Find Full Text PDFMedComm (2020)
January 2025
The increased prevalence of methicillin-resistant (MRSA) and its biofilms poses a great threat to human health. Especially, -related osteomyelitis was hardly cured even by conventional antibiotics combined with surgical treatment. The development of novel structural antibiotics is urgently needed.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!