Histidine Utilization Is a Critical Determinant of Pathogenesis.

Infect Immun

Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee, USA

Published: June 2020

is a nosocomial pathogen capable of causing a range of diseases, including respiratory and urinary tract infections and bacteremia. Treatment options are limited due to the increasing rates of antibiotic resistance, underscoring the importance of identifying new targets for antimicrobial development. During infection, must acquire nutrients for replication and survival. These nutrients include carbon- and nitrogen-rich molecules that are needed for bacterial growth. One possible nutrient source within the host is amino acids, which can be utilized for protein synthesis or energy generation. Of these, the amino acid histidine is among the most energetically expensive for bacteria to synthesize; therefore, scavenging histidine from the environment is likely advantageous. We previously identified the histidine utilization (Hut) system as being linked to nutrient zinc homeostasis, but whether the Hut system is important for histidine-dependent energy generation or vertebrate colonization is unknown. Here, we demonstrate that the Hut system is conserved among pathogenic and regulated by the transcriptional repressor HutC. In addition, the Hut system is required for energy generation using histidine as a carbon and nitrogen source. Histidine was also detected extracellularly in the murine lung, demonstrating that it is bioavailable during infection. Finally, the ammonia-releasing enzyme HutH is required for acquiring nitrogen from histidine , and strains inactivated for are severely attenuated in a murine model of pneumonia. These results suggest that bioavailable histidine in the lung promotes pathogenesis and that histidine serves as a crucial nitrogen source during infection.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7309604PMC
http://dx.doi.org/10.1128/IAI.00118-20DOI Listing

Publication Analysis

Top Keywords

hut system
16
energy generation
12
histidine
9
histidine utilization
8
nitrogen source
8
utilization critical
4
critical determinant
4
determinant pathogenesis
4
pathogenesis nosocomial
4
nosocomial pathogen
4

Similar Publications

Article Synopsis
  • The growing interest in plant-based protein foods raises questions about the move towards strictly plant-based diets, considering their effects on human health and environmental sustainability.
  • The sustainability of food systems, particularly with a rising global population, needs careful evaluation to balance dietary protein requirements, especially in an aging population facing chronic diseases.
  • A comprehensive review examines the muscle-building potential of various non-animal protein sources, emphasizing the balance between diet quality and environmental impacts, while also addressing global malnutrition and local nutritional needs.
View Article and Find Full Text PDF

An Empirical Model-Based Algorithm for Removing Motion-Caused Artifacts in Motor Imagery EEG Data for Classification Using an Optimized CNN Model.

Sensors (Basel)

November 2024

Humanitarian Technology (HuT) Labs, Department of Electronics and Communication Engineering, Amrita Vishwa Vidyapeetham, Amritapuri 690525, India.

Article Synopsis
  • EEG is a non-invasive, portable technique widely used in brain-computer interfaces (BCIs) to help individuals with severe mobility issues control devices like wheelchairs through motor imagery signals.
  • The study introduces a new approach for enhancing the quality of EEG recordings by addressing motion artifacts, which traditional methods struggle with, especially for users in motion.
  • Utilizing a modified CNN deep learning algorithm and considering real-world variables, the research achieved a high classification accuracy of 94.04% in distinguishing movements, showcasing its effectiveness for practical BCI applications.
View Article and Find Full Text PDF

2025 Roadmap on 3D Nano-magnetism.

J Phys Condens Matter

November 2024

Institute of Applied Physics, Vienna University of Technology, Wiedner Hauptstr. 8-10/134, Wien, 1040, AUSTRIA.

The transition from planar (2D) to three-dimensional (3D) magnetic nanostructures represents a significant advancement in both fundamental research and practical applications, offering vast potential for next-generation technologies like ultrahigh-density storage, memory, logic, and neuromorphic computing. Despite being a relatively new field, the emergence of 3D nanomagnetism presents numerous opportunities for innovation, prompting the creation of a comprehensive roadmap by leading international researchers. This roadmap aims to facilitate collaboration and interdisciplinary dialogue to address challenges in materials science, physics, engineering, and computing.

View Article and Find Full Text PDF

Beyond Lux: methods for species and photoreceptor-specific quantification of ambient light for mammals.

BMC Biol

November 2024

Centre for Biological Timing, Division of Neuroscience, School of Biological Sciences, Faculty of Biology Medicine and Health, University of Manchester, Manchester, M13 9PT, UK.

Article Synopsis
  • Light plays a crucial role in regulating the physiology and behavior of mammals, and improper light exposure can lead to health issues due to disrupted circadian rhythms.
  • The study introduces a new method for measuring light using a photoreceptor-specific (α-opic) approach that accounts for variations across different mammalian species and their unique photoreceptor types.
  • Results show that α-opic measurements provide better predictions of physiological responses to light than the traditional lux measurements, potentially enhancing animal welfare, scientific research, agriculture, and energy efficiency.
View Article and Find Full Text PDF

Metabolic mechanisms conferring pyrethroid resistance in malaria vectors are jeopardizing the effectiveness of insecticide-based interventions, and identification of their markers is a key requirement for robust resistance management. Here, using a field-lab-field approach, we demonstrated that a single mutation G454A in the P450 CYP9K1 is driving pyrethroid resistance in the major malaria vector Anopheles funestus in East and Central Africa. Drastic reduction in CYP9K1 diversity was observed in Ugandan samples collected in 2014, with the selection of a predominant haplotype (G454A mutation at 90%), which was completely absent in the other African regions.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!