p27 as a Transcriptional Regulator: New Roles in Development and Cancer.

Cancer Res

Breast Cancer Program, Lombardi Comprehensive Cancer Center, Department of Oncology, Georgetown University, Washington DC.

Published: September 2020

p27 binds and inhibits cyclin-CDK to arrest the cell cycle. p27 also regulates other processes including cell migration and development independent of its cyclin-dependent kinase (CDK) inhibitory action. p27 is an atypical tumor suppressor-deletion or mutational inactivation of the gene encoding p27, , is rare in human cancers. p27 is rarely fully lost in cancers because it can play both tumor suppressive and oncogenic roles. Until recently, the paradigm was that oncogenic deregulation results from either loss of growth restraint due to excess p27 proteolysis or from an oncogenic gain of function through PI3K-mediated C-terminal p27 phosphorylation, which disrupts the cytoskeleton to increase cell motility and metastasis. In cancers, C-terminal phosphorylation alters p27 protein-protein interactions and shifts p27 from CDK inhibitor to oncogene. Recent data indicate p27 regulates transcription and acts as a transcriptional coregulator of cJun. C-terminal p27 phosphorylation increases p27-cJun recruitment to and action on target genes to drive oncogenic pathways and repress differentiation programs. This review focuses on noncanonical, CDK-independent functions of p27 in migration, invasion, development, and gene expression, with emphasis on how transcriptional regulation by p27 illuminates its actions in cancer. A better understanding of how p27-associated transcriptional complexes are regulated might identify new therapeutic targets at the interface between differentiation and growth control.

Download full-text PDF

Source
http://dx.doi.org/10.1158/0008-5472.CAN-19-3663DOI Listing

Publication Analysis

Top Keywords

p27
14
p27 regulates
8
c-terminal p27
8
p27 phosphorylation
8
p27 transcriptional
4
transcriptional regulator
4
regulator roles
4
roles development
4
development cancer
4
cancer p27
4

Similar Publications

The mechanism of Se in regulating the proliferation and apoptosis of sheep Leydig cells through the miR-200a/NRF2 pathway.

Theriogenology

January 2025

College of Animal Science, Shanxi Agricultural University, Taigu, 030801, PR China; Laboratory of Animal Reproductive Biotechnology, Shanxi Agricultural University, Taigu, 030801, PR China. Electronic address:

This study aimed to investigate the mechanism by which Se in regulates the proliferation and apoptosis of sheep Leydig cells via the miR-200a/NRF pathway. The cells were isolated and purified from the testes of 8-month-old sheep via a Percoll density gradient. After the cells were treated with different concentrations of Se (0, 2.

View Article and Find Full Text PDF

Liquid-Vapor Phase Equilibrium in Molten Aluminum Chloride (AlCl) Enabled by Machine Learning Interatomic Potentials.

J Phys Chem B

January 2025

Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37830, United States.

Molten salts are promising candidates in numerous clean energy applications, where knowledge of thermophysical properties and vapor pressure across their operating temperature ranges is critical for safe operations. Due to challenges in evaluating these properties using experimental methods, fast and scalable molecular simulations are essential to complement the experimental data. In this study, we developed machine learning interatomic potentials (MLIP) to study the AlCl molten salt across varied thermodynamic conditions ( = 473-613 K and = 2.

View Article and Find Full Text PDF

The link of FOXO1 and FOXO4 transcription factors to development of the lens.

Dev Dyn

January 2025

Department of Pathology and Genomic Medicine, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, Pennsylvania, USA.

Background: The FOXOs regulate the transcription of many genes, including ones directly linked to pathways required for lens development. However, this transcription factor family has rarely been studied in the context of development, including the development of the lens. FOXO expression, regulation, and function during lens development remained unexplored.

View Article and Find Full Text PDF

Pancreatic ductal adenocarcinoma (PDAC) is one of the most aggressive and grave malignancies with confined and ineffective therapeutic options. XPO1 is a critical regulator of nuclear export and activation of tumor suppressor proteins. The present study evaluated the therapeutic potential and molecular mechanisms of XPO1 inhibition against PDAC.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!