The paucity of physiological time-series data collected from low-resource clinical settings limits the capabilities of modern machine learning algorithms in achieving high performance. Such performance is further hindered by class imbalance; datasets where a diagnosis is much more common than others. To overcome these two issues at low-cost while preserving privacy, data augmentation methods can be employed. In the time domain, the traditional method of time-warping could alter the underlying data distribution with detrimental consequences. This is prominent when dealing with physiological conditions that influence the frequency components of data. In this paper, we propose PlethAugment; three different conditional generative adversarial networks (CGANs) with an adapted diversity term for the generation of pathological photoplethysmogram (PPG) signals in order to boost medical classification performance. To evaluate and compare the GANs, we introduce a novel metric-agnostic method; the synthetic generalization curve. We validate this approach on two proprietary and two public datasets representing a diverse set of medical conditions. Compared to training on non-augmented class-balanced datasets, training on augmented datasets leads to an improvement of the AUROC by up to 29% when using cross validation. This illustrates the potential of the proposed CGANs to significantly improve classification performance.

Download full-text PDF

Source
http://dx.doi.org/10.1109/JBHI.2020.2979608DOI Listing

Publication Analysis

Top Keywords

classification performance
8
plethaugment gan-based
4
gan-based ppg
4
ppg augmentation
4
augmentation medical
4
medical diagnosis
4
diagnosis low-resource
4
low-resource settings
4
settings paucity
4
paucity physiological
4

Similar Publications

Background: Pharmacoepidemiologic studies assessing drug effectiveness for Alzheimer's disease and related dementias (ADRD) are increasingly popular given the critical need for effective therapies for ADRD. To meet the urgent need for robust dementia ascertainment from real-world data, we aimed to develop a novel algorithm for identifying incident and prevalent dementia in claims.

Method: We developed algorithm candidates by different timing/frequency of dementia diagnosis/treatment to identify dementia from inpatient/outpatient/prescription claims for 6,515 and 3,997 participants from Visits 5 (2011-2013; mean age 75.

View Article and Find Full Text PDF

Dementia Care Research and Psychosocial Factors.

Alzheimers Dement

December 2024

Relecura, Bangalore, karnataka, India.

Background: Clinical Dementia Rating (CDR) and its evaluation have been important nowadays as its prevalence in older ages after 60 years. Early identification of dementia can help the world to take preventive measures as most of them are treatable. The cellular Automata (CA) framework is a powerful tool in analyzing brain dynamics and modeling the prognosis of Alzheimer's disease.

View Article and Find Full Text PDF

Dementia Care Research and Psychosocial Factors.

Alzheimers Dement

December 2024

Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, México, DF, Mexico.

Background: The World Health Organization forecasts a population of 2,000 million people over 60 years by the year 2050, with 7% of this population suffering from dementia. Making a constant clinical-technological evaluation of older adults allows early detection of the disease and provides a better quality of life for the patient. In this sense, the research and development of innovative technological systems for the early detection of the disease, its monitoring and management of the growing number of patients with cognitive diseases has increased in recent years, integrating data collection and its automatic processing based on geriatric metrics into these systems using artificial intelligence (AI) methods.

View Article and Find Full Text PDF

Dementia Care Research and Psychosocial Factors.

Alzheimers Dement

December 2024

Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore.

Background: Multidomain lifestyle interventions for dementia risk reduction have been developed and trialled because reversible lifestyle factors have been shown to contribute to the onset and progression of dementia. A recent review and meta-analysis confirmed small beneficial effects of such interventions on cognitive performance. To enhance the effectiveness of these interventions, we have developed and incorporated personalisation approaches.

View Article and Find Full Text PDF

Background: Structural and functional heterogeneity in the brains of patients with Alzheimer's disease (AD) leads to diagnostic and prognostic uncertainty and confounds clinical treatment planning. Normative modelling, where individual-level deviations in brain measures from a reference sample are computed to infer personalized effects of disease, allows parsing of disease heterogeneity. In this study, GAN based normative modelling technique quantifies individual level neuroanatomical abnormality thereby facilitating measurement of personalized disease related effects in AD patients.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!