This article presents the first surfel-based method for multi-view 3D reconstruction of the boundary between known and unknown space. The proposed approach integrates multiple views from a moving depth camera and it generates a set of surfels that encloses observed empty space, i.e., it models both the boundary between empty and occupied space, and the boundary between empty and unknown space. One novelty of the method is that it does not require a persistent voxel map of the environment to distinguish between unknown and empty space. The problem is solved thanks to an incremental algorithm that computes the Boolean union of two surfel bounded volumes: the known volume from previous frames and the space observed from the current depth image. A number of strategies were developed to cope with errors in surfel position and orientation. The method, implemented on CPU and GPU, was evaluated on real data acquired in indoor scenarios, and it was compared against state of the art approaches. Results show that the proposed method has a low number of false positive and false negatives, it is faster than a standard volumetric algorithm, it has a lower memory consumption, and it scales better in large environments.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1109/TVCG.2020.2990315 | DOI Listing |
Proc Biol Sci
January 2025
Animal Physiology Unit, Institute of Neurobiology, University of Tübingen, Auf der Morgenstelle 28, Tübingen 72076, Germany.
Like humans and many other animal species, birds exhibit left-right asymmetries in certain behaviours due to differences in hemispheric brain functions. While the lateralization of sensory and motor functions is well established in birds, the potential lateralization of high-level executive control functions, such as volitional attention, remains unknown. Here, we demonstrate that carrion crows exhibit more pronounced volitional (endogenous) attention for stimuli monocularly viewed with the left eye and thus in the left visual hemifield.
View Article and Find Full Text PDFCell Commun Signal
January 2025
Dipartimento di Scienze della Vita e Sanità Pubblica, Università Cattolica del Sacro Cuore, Rome, Italy.
Background: Neuropilin-1 (NRP1) is a transmembrane protein involved in surface receptor complexes for a variety of extracellular signals. NRP1 expression in human cancers is associated with prominent angiogenesis and advanced progression stage. However, the molecular mechanisms underlying NRP1 activity in the tumor microenvironment remain unclear.
View Article and Find Full Text PDFFASEB J
January 2025
Department of Nephrology, State Key Laboratory of Kidney Diseases, Beijing Key Laboratory of Kidney Disease Research, National Clinical Research Center for Kidney Diseases, Nephrology Institute of the Chinese People's Liberation Army, Chinese PLA General Hospital, Beijing, China.
Spaceflight-induced multi-organ dysfunction affects the health of astronauts and the safety of in-orbit flight. However, the effect of microgravity on the kidney and the underlying mechanisms are unknown. In the current study, we used a hindlimb unweighting (HU) animal model to simulate microgravity and employed histological analysis, ischemia-reperfusion experiments, renal ultrasonography, bioinformatics analysis, isometric force measurement, and other molecular experimental settings to evaluate the effects of microgravity on the kidneys and the underlying mechanisms involved in this transition.
View Article and Find Full Text PDFSci Rep
January 2025
Computational Learning Theory Team, RIKEN-Advanced Intelligence Project, Fukuoka, 819-0395, Japan.
Providing continuous wireless connectivity for high-speed trains (HSTs) is challenging due to their high speeds, making installing numerous ground base stations (BSs) along the HST route an expensive solution, particularly in rural and wilderness areas. This paper proposes using multiple unmanned aerial vehicles (UAVs) to deliver high data rate wireless connectivity for HSTs, taking advantage of their ability to fly, hover, and maneuver at low altitudes. However, autonomously selecting the optimal UAV by the HST is challenging.
View Article and Find Full Text PDFNat Astron
November 2024
Department of Astronomy and Astrophysics, Tata Institute of Fundamental Research, Mumbai, India.
The precise origins of fast radio bursts (FRBs) remain unknown. Multiwavelength observations of nearby FRB sources can provide important insights into the enigmatic FRB phenomenon. Here we present results from a sensitive, broadband X-ray and radio observational campaign of FRB 20200120E, the closest known extragalactic repeating FRB source (located 3.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!