Serious games are receiving increasing attention in the field of cultural heritage (CH) applications. A special field of CH and education is intangible cultural heritage and particularly dance. Machine learning (ML) tools are necessary elements for the success of a serious game platform since they introduce intelligence in processing and analysis of users' interactivity. ML provides intelligent scoring and monitoring capabilities of the user's progress in a serious game platform. In this article, we introduce a deep learning model for motion primitive classification. The model combines a convolutional processing layer with a bidirectional analysis module. This way, RGB information is efficiently handled by the hierarchies of convolutions, while the bidirectional properties of a long short term memory (LSTM) model are retained. The resulting convolutionally enhanced bidirectional LSTM (CEBi-LSTM) architecture is less sensitive to skeleton errors, occurring using low-cost sensors, such as Kinect, while simultaneously handling the high amount of detail when using RGB visual information.

Download full-text PDF

Source
http://dx.doi.org/10.1109/MCG.2020.2985035DOI Listing

Publication Analysis

Top Keywords

serious game
12
deep learning
8
cultural heritage
8
game platform
8
motion primitives
4
primitives classification
4
classification deep
4
learning models
4
serious
4
models serious
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!