Microbiota Metabolites in Health and Disease.

Annu Rev Immunol

Molecular and Systems Physiology Laboratory, Gene Expression Laboratory, NOMIS Center for Immunobiology and Microbial Pathogenesis, Salk Institute for Biological Studies, La Jolla, California 92037, USA; email:

Published: April 2020

AI Article Synopsis

  • Metabolism drives interactions between microorganisms and their multicellular hosts, influencing energy needs and biosynthetic processes.
  • Recent research highlights how metabolites from microbiota play key regulatory roles in host functions like immunity, inflammation, and infection defense.
  • Understanding this metabolic communication could lead to new treatments for diseases caused by microbes, enhancing our grasp of both beneficial and harmful microbial interactions.

Article Abstract

Metabolism is one of the strongest drivers of interkingdom interactions-including those between microorganisms and their multicellular hosts. Traditionally thought to fuel energy requirements and provide building blocks for biosynthetic pathways, metabolism is now appreciated for its role in providing metabolites, small-molecule intermediates generated from metabolic processes, to perform various regulatory functions to mediate symbiotic relationships between microbes and their hosts. Here, we review recent advances in our mechanistic understanding of how microbiota-derived metabolites orchestrate and support physiological responses in the host, including immunity, inflammation, defense against infections, and metabolism. Understanding how microbes metabolically communicate with their hosts will provide us an opportunity to better describe how a host interacts with all microbes-beneficial, pathogenic, and commensal-and an opportunity to discover new ways to treat microbial-driven diseases.

Download full-text PDF

Source
http://dx.doi.org/10.1146/annurev-immunol-071219-125715DOI Listing

Publication Analysis

Top Keywords

microbiota metabolites
4
metabolites health
4
health disease
4
disease metabolism
4
metabolism strongest
4
strongest drivers
4
drivers interkingdom
4
interkingdom interactions-including
4
interactions-including microorganisms
4
microorganisms multicellular
4

Similar Publications

Gut Microbiome Modulation of Glutamate Dynamics: Implications for Brain Health and Neurotoxicity.

Nutrients

December 2024

Department of Anesthesiology and Critical Care, Soroka University Medical Center, Ben-Gurion University of the Negev, Beer-Sheva 84101, Israel.

The gut-brain axis plays an integral role in maintaining overall health, with growing evidence suggesting its impact on the development of various neuropsychiatric disorders, including depression. This review explores the complex relationship between gut microbiota and glutamate (Glu) regulation, highlighting its effect on brain health, particularly in the context of depression following certain neurological insults. We discuss how microbial populations can either facilitate or limit Glu uptake, influencing its bioavailability and predisposing to neuroinflammation and neurotoxicity.

View Article and Find Full Text PDF

Objectives: Cancer-related fatigue (CRF) is highly prevalent in patients with breast cancer, resulting in undesirable outcomes and even reduced survival rates. This cross-sectional study investigated the relationship between dietary quality and CRF in patients with breast cancer, and the potential role of gut microbiota (GM) in this association.

Methods: Dietary intake and CRF were evaluated in 342 patients, with 64 fecal samples collected for 16sRNA sequencing and 106 plasma samples for tryptophan (TRP) metabolite determination.

View Article and Find Full Text PDF

Background/objectives: Inflammatory bowel disease (IBD) is a chronic condition influenced by a variety of factors, including genetics, the environment, and gut microbiota. The incidence of IBD is increasing globally. Previous studies have shown that interactions between diet and gut microbiota influence the pathogenesis and treatment of IBD.

View Article and Find Full Text PDF

Inhibition, Gastritis Attenuation, and Gut Microbiota Protection in C57BL/6 Mice by NCUH062003.

Microorganisms

December 2024

State Key Laboratory of Food Science and Resources, Nanchang University, No. 235 Nanjing East Road, Nanchang 330047, China.

(), one of the most prevalent pathogenic bacteria worldwide, is the leading cause of gastritis, gastric intestinal metaplasia, and gastric cancer. Antibiotics, the conventional treatment for eliminating , often lead to severe bacterial resistance, gut dysbiosis, and hepatic insufficiency and fail to address the inflammatory response or gastric mucosal damage caused by infection. In this study, based on 10-week animal experiments, two models of NCUH062003 for the prophylaxis and therapy of infection in C57BL/6 mice were established; a comprehensive comparative analysis was performed to investigate the anti- effect of probiotics, the reduction in inflammation, and repair of gastric mucosal damage.

View Article and Find Full Text PDF

Laboratory mice are instrumental for preclinical research but there are serious concerns that the use of a clean standardized environment for specific-pathogen-free (SPF) mice results in poor bench-to-bedside translation due to their immature immune system. The aim of the present study was to test the importance of the gut microbiota in wild vs. SPF mice for evaluating host immune responses in a house-dust-mite-induced allergic airway inflammation model without the influence of pathogens.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!