Time-resolved dosimetry for validation of 4D dose calculation in PBS proton therapy.

Phys Med Biol

Division of Medical Radiation Physics, Department of Radiation Oncology, Medical University of Vienna/AKH Vienna, Vienna, Austria. Christian Doppler Laboratory for Medical Radiation Research for Radiation Oncology, Medical University of Vienna, Vienna, Austria.

Published: June 2020

Four-dimensional dose calculation (4D-DC) is crucial for predicting the dosimetric outcome in the presence of intra-fractional organ motion. Time-resolved dosimetry can provide significant insights into 4D pencil beam scanning dose accumulation and is therefore irreplaceable for benchmarking 4D-DC. In this study a novel approach of time-resolved dosimetry using five PinPoint ionization chambers (ICs) embedded in an anthropomorphic dynamic phantom was employed and validated against beam delivery details. Beam intensity variations as well as the beam delivery time structure were well reflected with an accuracy comparable to the temporal resolution of the IC measurements. The 4D dosimetry approach was further applied for benchmarking the 4D-DC implemented in the RayStation 6.99 treatment planning system. Agreement between computed values and measurements was investigated for (i) partial doses based on individual breathing phases, and (ii) temporally distributed cumulative doses. For varied beam delivery and patient-related parameters the average unsigned dose difference for (i) was 0.04 ± 0.03 Gy over all considered IC measurement values, while the prescribed physical dose was 2 Gy. By implementing (ii), a strong effect of the dose gradient on measurement accuracy was observed. The gradient originated from scanned beam energy modulation and target motion transversal to the beam. Excluding measurements in the high gradient the relative dose difference between measurements and 4D-DCs for a given treatment plan at the end of delivery was 3.5% on average and 6.6% at maximum over measurement points inside the target. Overall, the agreement between 4D dose measurements in the moving phantom and retrospective 4D-DC was found to be comparable to the static dose differences for all delivery scenarios. The presented 4D-DC has been proven to be suitable for simulating treatment deliveries with various beam- as well as patient-specific parameters and can therefore be employed for dosimetric validation of different motion mitigation techniques.

Download full-text PDF

Source
http://dx.doi.org/10.1088/1361-6560/ab8d79DOI Listing

Publication Analysis

Top Keywords

time-resolved dosimetry
12
beam delivery
12
dose
9
dose calculation
8
benchmarking 4d-dc
8
dose difference
8
beam
7
4d-dc
5
delivery
5
measurements
5

Similar Publications

Background: For the development and validation of dynamic treatment modalities and processes on the MR-linac, independent measurements should be performed that validate dose delivery and linac behavior at a high temporal resolution. To achieve this, a detector with both high temporal and spatial resolution is necessary.

Purpose: This study investigates the suitability of a Delta4 Phantom+ MR (Delta4) detector array for time-resolved dosimetry in the 1.

View Article and Find Full Text PDF
Article Synopsis
  • The study characterizes a new scintillation dosimetry system designed for ultra-high dose rate (UHDR) radiotherapy, aiming to effectively handle mean dose rates above 100 Gy/s and doses per pulse that exceed 1.5 Gy.
  • The system demonstrated consistent performance with a dose linearity tolerance of ±3%, showing independence from varying dose rates and pulse doses, while maintaining accurate measurements of individual pulse doses delivered at high frequencies.
  • With proper calibrations and corrections, this system can provide real-time, millisecond-resolved dosimetry in both conventional and UHDR treatment settings, advancing techniques in FLASH radiotherapy and other related applications.
View Article and Find Full Text PDF

Sample efficient approaches in time-resolved X-ray serial crystallography and complementary X-ray emission spectroscopy using drop-on-demand tape-drive systems.

Methods Enzymol

November 2024

Diamond Light Source, Harwell Science & Innovation Campus, Didcot, United Kingdom; Research Complex at Harwell, Rutherford Appleton Laboratory, Didcot, United Kingdom. Electronic address:

Dynamic structural biology enables studying biological events at the atomic scale from 10's of femtoseconds to a few seconds duration. With the advent of X-ray Free Electron Lasers (XFELs) and 4th generation synchrotrons, serial crystallography is becoming a major player for time-resolved experiments in structural biology. Despite significant progress, challenges such as obtaining sufficient amounts of protein to produce homogeneous microcrystal slurry, remain.

View Article and Find Full Text PDF

Background: Pre-clinical studies demonstrate that delivering a high dose at a high dose rate result in less toxicity while maintaining tumor control, known as the FLASH effect. In proton therapy, clinical trials have started using 250 MeV transmission beams and more trials are foreseen. A novel aspect of FLASH treatments, compared to conventional radiotherapy, is the importance of dose rate next to dose and geometry.

View Article and Find Full Text PDF

Thermal transport properties for the isotropic and anisotropic characterization of nanolayers have been a significant gap in the research over the last decade. Multiple studies have been close to determining the thermal conductivity, diffusivity, and boundary resistance between the layers. The methods detailed in this work involve non-contact frequency domain pump-probe thermoreflectance (FDTR) and photothermal radiometry (PTR) methods for the ultraprecise determination of in-plane and cross-plane thermal transport properties.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!