Objectives: Increasing incidence of azole resistance in Candida tropicalis, especially to fluconazole, has been seen in Asian countries including India. Limited knowledge is available on the molecular mechanisms associated with the development of azole resistance in C. tropicalis. The present study examined the dynamics of in vitro azole resistance in C. tropicalis after prolonged treatment with fluconazole.
Methods: Nine fluconazole-susceptible isolates of C. tropicalis were used in this study. Fluconazole resistance was induced experimentally in C. tropicalis isolates. The stability of induced resistance and cross-resistance to other azoles was examined. The molecular mechanisms of azole resistance were assessed by measuring the expression and mutation analysis of different genes.
Results: Varying degrees of resistance [five with minimum inhibitory concentrations (MICs) ≤32 mg/L and four with MICs ≥128 mg/L] were noticed, and the resistance was developed in 3 months. Of the nine resistant isolates, four induced resistant isolates with MICs ≥128 mg/L presented temporal resistance stability up to 10 subcultures. These four isolates presented cross-resistance to other azoles and also an inducible overexpression of transporters (CDR1, CDR2, CDR3 and MDR1), ergosterol biosynthesis pathway genes (ERG1, ERG2, ERG3 and ERG11), transcription factors (TAC1 and UPC2) and stress-responsive genes (HSP90 and MKC1) was noticed. No mutations were seen in any of the four genes (ERG1, ERG3, ERG11 and UPC2) tested.
Conclusions: Candida tropicalis isolates adapt themselves in the presence of continuous drug exposure and switch back to being susceptible in the absence of the drug. The acquisition of resistance in C. tropicalis is mediated by the overexpression of different resistance-related genes without any molecular alterations.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jgar.2020.04.018 | DOI Listing |
Med Chem
January 2025
Department of Pharmaceutical Chemistry, MM College of Pharmacy, Maharishi Markandeshwar (Deemed to be University), Mullana, Ambala 133207, India.
The emergence of multidrug-resistant microbial strains poses a significant challenge to global public health. In response, researchers have been exploring innovative antimicrobial agents with enhanced efficacy and novel mechanisms of action. One promising approach involves the synthesis of hybrid molecules combining azetidinone and azole moieties, capitalizing on the respective antimicrobial properties of both structural elements.
View Article and Find Full Text PDFWorld J Microbiol Biotechnol
January 2025
The Key Laboratory for Extreme-Environmental Microbiology, College of Plant Protection, Shenyang Agricultural University, Shenyang, 110866, China.
The endophytic fungus Serendipita indica (Si) could suppress Phoma arachidicola (Pa) and control peanut web blotch disease. The study evaluated its growth-promoting and disease-resistant effects in two peanut cultivars, Luhua11 and Baisha1016. In vitro experiments and microscopy analysis demonstrated that S.
View Article and Find Full Text PDFInt J Biol Sci
January 2025
Department of Urology, the Fourth Affiliated Hospital of School of Medicine, and International School of Medicine, International Institutes of Medicine, Zhejiang University, Yiwu, China.
Clear cell renal cell carcinoma (ccRCC) is one of the most common and aggressive malignancies of the urinary system. Despite being the first-line treatment for advanced ccRCC, vascular endothelial growth factor receptor inhibitors (VEGFRis) face significant limitations due to both initial and acquired resistance, which impede complete tumor eradication. Using a CRISPR/Cas9 library screening approach, was identified as a resistance-associated gene for three prevalent VEGFRis (Sunitinib, Axitinib, and Sorafenib).
View Article and Find Full Text PDFJ Transl Med
January 2025
Department of General Surgery of Otorhinolaryngology Head and Neck, The Sixth Affiliated Hospital, Sun Yat-Sen University, No.26, Erheng Road, Yuancun, Tianhe District, Guangzhou, 510655, China.
Purpose: Tumor-associated macrophages (TAMs) are pivotal immune cells within the tumor microenvironment (TME), exhibiting dual roles across various cancer types. Depending on the context, TAMs can either suppress tumor progression and weaken drug sensitivity or facilitate tumor growth and drive therapeutic resistance. This study explores whether targeting TAMs can suppress the progression of head and neck squamous cell carcinoma (HNSCC) and improve the efficacy of chemotherapy.
View Article and Find Full Text PDFSci Rep
January 2025
Laboratory of Photobiology and Molecular Diagnostics, Intercollegiate Faculty of Biotechnology, University of Gdansk and Medical University of Gdansk, Gdańsk, Poland.
Staphylococcus aureus (S. aureus) can survive inside nonprofessional phagocytes such as keratinocytes, enabling it to evade antibiotics and cause recurrent infections once treatment stops. New antibacterial strategies to eliminate intracellular, multidrug-resistant bacteria are needed.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!