Invasive alien species represent a serious threat to global biodiversity, causing considerable damage to native ecosystems. To better assess invasion risks, it is essential to better understand the biological processes that determine the success or failure of invasions. The catadromous Chinese mitten crab Eriocheir sinensis, whose native distribution is the Pacific Coast of China and Korea, has successfully invaded and established populations in North America and Europe. In Japan, where E. sinensis is also regarded as potentially invasive and multiple introduction vectors exist, the species is not yet established. These settings can be used to explore niche-based processes underlying the apparent failure of a biological invasion. We first quantified native and invasive realized niches of E. sinensis in freshwater habitats using geometrical n-dimensional hypervolumes. Based on the assumption of niche conservatism, we then projected habitat suitability of this species in Japan using species distribution models (SDMs) calibrated with distinct sets of distribution data: native occurrences, invasive occurrences, and both. Results showed that E. sinensis has undergone either niche shifts or niche contractions during invasions in different areas of the world. Projections from SDMs indicate that although part of Japan is suitable for E. sinensis, this does not include the freshwater habitats around the Ariake Sea, which is considered to be a suitable marine environment for E. sinensis larvae. The mismatch between suitable freshwater and marine environments provides a possible explanation for the failure of establishment of E. sinensis in Japan to date. Our findings have useful general implications for the interpretation of biological invasions.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.scitotenv.2020.138815 | DOI Listing |
Nat Ecol Evol
December 2024
Department of Biological Sciences, Marquette University, Milwaukee, WI, USA.
Testing the extent to which ecological communities are structured by deterministic (niche-based) assembly processes, resulting in predictable species abundance and composition, is a fundamental goal of ecology. Here we use a 10-year dataset of 55,156 lianas comprising 86 species in an old-growth tropical forest in Panama to test whether community assembly is consistent with niche-based assembly processes. We find that species diversity and community composition was maintained because species conformed to four general requirements of coexistence theory: (1) species have negative conspecific frequency-dependent feedback that control their local population size; (2) species have a stronger negative effect on their own population than that of heterospecifics; (3) the equilibrium frequencies of species correspond to their relative abundance; and (4) species have positive invasibility.
View Article and Find Full Text PDFEnviron Res
December 2024
Guangdong-Hong Kong Joint Laboratory for Water Security, Beijing Normal University, Zhuhai, 519087, China; Center for Water Research, Advanced Institute of Natural Sciences, Beijing Normal University, Zhuhai, 519087, China. Electronic address:
Moving bed biofilm reactor (MBBR) technology with diverse merits is efficient in treating various waste streams whereas their microbial functional properties and ecology still need in-depth investigation, especially in real wastewater treatment systems. Herein, a well-controlled MBBR treating municipal wastewater was established to investigate the long-term system performance and the underlying principles of community succession and assembly. The system successfully achieved ammonium, TN, and chemical oxygen demand (COD) removal of 96.
View Article and Find Full Text PDFIn niche-based community assembly theory, it is presumed that communities in habitats with high natural disturbance regimes are less likely to be structured by competitive mechanisms. Laurentian Great Lakes (hereafter Great Lakes) coastal wetlands can experience drastic diel fluctuations in dissolved oxygen levels, severe wave action, ice scour, and near complete freezing during the winter such that conditions are inhospitable for most organisms. The high natural disturbance levels are thought to cause high interannual turnover for aquatic macroinvertebrate communities and support the hypothesis that these communities are less likely to experience less competitive interactions and negative co-occurrence structure.
View Article and Find Full Text PDFEcol Lett
September 2024
State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Beijing, China.
An Acad Bras Cienc
September 2024
Universidade Federal do Pampa, Campus São Gabriel, Rua Aluízio Barros Macedo, BR290 - Km 423, Bairro Universitário, 97307-020 São Gabriel, RS, Brazil.
Organisms can respond to environmental gradients from local to landscape features. Aquatic insects are particularly affected by watershed peculiarities due to their dependence on microhabitat conditions. However, these relationships are poorly understood in lotic ecosystems of subtropical grasslands, limiting water resources management and bioassessment proposals.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!