Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 144
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 144
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 212
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3106
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
In this work we presented a novel computational model of precipitation polymerization allowing one to obtain core-shell microgels via a realistic cross-linking process based on the experimental procedure. We showed that the cross-linker-monomer reactivity ratios r are responsible for the microgel internal structure. Values of r lower than 1 correspond to the case when alternating sequences occur at the early reaction stages; this leads to the formation of microgels with pronounced core-shell structure. The distribution of dangling ends for small values of r becomes bimodal with two well-distinguished peaks, which correspond to the core (short dangling ends) and corona (long dangling ends) regions. The density profiles confirm the existence of two distinct regions for small r: a densely cross-linked core and a loose corona entirely consisting of dangling ends with no cross-linker. The consumption of the cross-linker in the course in the microgel formation was found to be in a perfect agreement with the predictions of Monte Carlo (MC) model in the sequence space.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jcis.2020.04.064 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!