A series of poly(2-hydroxyethyl methacrylate) (pHEMA) hydrogels containing cross-linked β-cyclodextrin-hyaluronan (β-CD-crHA), with tear protein adsorption resistance and sustained drug delivery, were developed as contact lens materials for eye diseases. β-CD-HA was synthesized from aminated β-CD and HA and then crosslinked within pHEMA hydrogel using polyethylenimine as a crosslinker. The synthesized β-CD-HA was characterized by H NMR analysis, and β-CD-crHA immobilized in pHEMA hydrogel was confirmed by FT-IR, SEM, and AFM analyses. The incorporation of β-CD-crHA significantly improved the surface hydrophilicity, water uptake ability, oxygen permeability, and flexibility of pHEMA hydrogel, but did not compromise light transmission. pHEMA/β-CD-crHA hydrogels not only decreased the tear protein adsorption because of the electrostatically mutual repulsion and the improved hydrophilicity, leading to the reduced adhesion of Staphylococcus aureus on the hydrogel surface, but also enhanced the encapsulation capacity and the sustainable delivery of diclofenac due to the formation of inclusion complexes between β-CD and drugs. All the hydrogels were nontoxic to 3T3 mouse fibroblasts by in vitro cell viability analysis. Among these hydrogels with different β-CD-crHA contents, pHEMA/β-CD-crHA hydrogel showed the lowest water contact angle of 52 °, the highest water content of 65%, the largest Dk value of 36.4 barrer, and the optimal modulus of 1.8 MPa, as well as a good light transmission of over 90%. The in vivo conjunctivitis treatment of rabbits for 72 h indicated that drug-loaded pHEMA/β-CD-crHA hydrogel presented a better therapeutic effect than both one dose administration of drug solution per day and drug-loaded pHEMA hydrogel. Thus, pHEMA/β-CD-crHA hydrogel is a promising contact lens material for ophthalmic diseases. STATEMENT OF SIGNIFICANCE: Topical eye drops are currently the most popular treatment for ophthalmic diseases, but frequent dosing is necessary to acquire the desirable clinical effect at the expense of systemic side-effects. Drug-loaded contact lenses, as an alternative of eye drops, possess many good performances and show potential applications. However, the sustained drug delivery and the tear protein adsorption resistance are still challenging for contact lenses. Hence, we developed a novel pHEMA/β-CD-crHA hydrogel by incorporating β-CD-crHA crosslinked network into pHEMA hydrogel. Besides the improvements in surface hydrophilicity, water uptake ability, oxygen permeability, and flexibility, pHEMA/β-CD-crHA hydrogel also reduced the adsorption of tear proteins and the adhesion of Staphylococcus aureus, enhanced the drug encapsulation, and prolonged the drug delivery, with better effect in the conjunctivitis treatment of rabbits. Thus, pHEMA/β-CD-crHA hydrogel is a potential contact lens material for treating ophthalmic diseases.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.actbio.2020.04.002 | DOI Listing |
Molecules
December 2024
Faculty of Science and Technology, Jan Dlugosz University, Al. Armii Krajowej 13/15, 42-200 Czestochowa, Poland.
The structural and dynamic properties of poly(2-hydroxyethyl methacrylate) (PHEMA) and poly(-vinylpyrrolidone--2-hydroxyethyl methacrylate) [P(VP--HEMA)], dry and as hydrogels, were studied by molecular dynamics simulations. The P(VP--HEMA) chains differed in the number of VP mers, distributed randomly or in blocks. In all considered configurations, HEMA and VP side chains proved relatively rigid and stable.
View Article and Find Full Text PDFJ Biomed Mater Res B Appl Biomater
December 2024
Department of Veterinary Surgery and Radiology, West Bengal University of Animal and Fishery Sciences, Kolkata, India.
Zinc oxide nanoparticles are known to possess anti-inflammatory, antibacterial, and antiseptic properties and find wide application in the preparation of topical ointments. Wound dressings in the form of hydrogels can replenish the wound microenvironment to aid the healing process in a multidimensional way. We have fabricated a composite hydrogel using 1-3 wt.
View Article and Find Full Text PDFInt J Biol Macromol
December 2024
Department of Materials Science and Engineering, College of Chemistry and Materials Science, Jinan University, Guangzhou 511436, China; Engineering Research Center of Artificial Organs and Materials, Ministry of Education, Guangzhou 511436, China. Electronic address:
A novel poly(2-hydroxyethyl methacrylate-co-methacrylated hyaluronan-β-cyclodextrin) [p(HEMA-co-mHA-β-CD)] hydrogel was developed as a potential contact lens for ophthalmic disease. The hydrogel was synthesized from the copolymerization of 2-hydroxyethyl methacrylate (HEMA) monomer and mHA-β-CD as a hydrophilic macromolecular crosslinker. By adjusting the methacrylate substitution degree in hyaluronan (20-29 %) and the mHA-β-CD content (5-11 %), transparent p(HEMA-co-mHA-β-CD) hydrogels were achieved.
View Article and Find Full Text PDFPolymers (Basel)
October 2024
R&D Center, TE BioS, Co., Ltd., 194-41, Osongsaengmyeong 1-ro, Heungdeok-gu, Cheongju-si 28160, Republic of Korea.
Poly(2-hydroxyethyl methacrylate) (PHEMA) has been widely used in medical materials for several decades. However, the poor mechanical properties of this material have limited its application in the field of tissue engineering. The purpose of this study was to fabricate a scaffold with suitable mechanical properties and in vitro cell responses for soft tissue by using poly(HEMA-co-MMA) with various concentration ratios of hydroxyethyl methacrylate (HEMA) and methyl methacrylate (MMA).
View Article and Find Full Text PDFPolymers (Basel)
October 2024
School of Pharmacy, Queen's University of Belfast, 97, Lisburn Road, Belfast BT9 7BL, UK.
This study describes the physicochemical characterisation of interpenetrating hydrogel networks (IHNs) composed of either poly(hydroxyethylmethacrylate, p(HEMA)) or poly(methacrylic acid, p(MAA)), and Pluronic block copolymers (grades F127, P123 and L121). IHNs were prepared by mixing the acrylate monomer with Pluronic block copolymers followed by free radical polymerisation. p(HEMA)-Pluronic blends were immiscible, evident from a lack of interaction between the two components (Raman spectroscopy) and the presence of the glass transitions (differential scanning calorimetry, DSC) of the two components.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!