Solidification of self-microemulsifying drug delivery systems (SMEDDS) is a rising experimental field with important potential for pharmaceutical industry, however fluid-bed granulation with SMEDDS is yet an unexplored solidification technique. The aim of the study was to solidify carvedilol-loaded SMEDDS utilizing fluid bed granulation process and to investigate how the formulation variables (type of solid carrier, optimization of granulation dispersion) and fluid-bed granulation process variables can be optimized in order to achieve suitable agglomeration process, high drug loading and appropriate product characteristics. Obtained granulates exhibited complete drug release, comparable to liquid SMEDDS and superior to crystalline carvedilol, nevertheless compromise between large SMEDDS loading and appropriate flow properties of the granules has to be made. Representative granulates with highest drug loading were further compressed into tablets. It was shown that the optimal excipient selection of compression mixture and compression force can lead to fast carvedilol release even from the tablets. Selfmicroemulsifying properties were not impaired neither after the solidification process and nor after the compression of solid SMEDDS into tablets. This suggests that fluid-bed granulation with SMEDDS offers a perspective alternative for solidification of the SMEDDS, enabling preservation of self-microemulsifying properties, acceptable drug loading and complete drug release.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.ijpharm.2020.119377 | DOI Listing |
Alzheimers Dement
December 2024
Department of Anesthesiology and Critical Care, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, U.S.A., Philadelphia, PA, USA.
Background: The vicious cycle between depression and dementia increases the risk of Alzheimer's Disease (AD) pathogenesis and pathology. This study investigates therapeutic effectiveness versus side effects and the underlying mechanisms of intranasal dantrolene nanoparticles (IDNs) to treat depression behavior and memory loss in 5XFAD mice.
Method: 5XFAD and wild-type B6SJLF1/J mice were treated with IDNs (IDN, 5 mg/kg) in Ryanodex formulation for a duration of 12 weeks.
Background: Alzheimer's disease (AD) is the most common cause of dementia worldwide. It is characterized by dysfunction in the U1 small nuclear ribonucleoproteins (snRNPs) complex, which may precede TAU aggregation, enhancing premature polyadenylation, spliceosome dysfunction, and causing cell cycle reentry and death. Thus, we evaluated the effects of a synthetic single-stranded cDNA, called APT20TTMG, in induced pluripotent stem cells (iPSC) derived neurons from healthy and AD donors and in the Senescence Accelerated Mouse-Prone 8 (SAMP8) model.
View Article and Find Full Text PDFAlzheimers Dement
December 2024
Henan Academy of Innovations in Medical Science, Zhengzhou, Henan, China.
Background: Glucagon-like peptide 1 (GLP-1) is a peptide hormone that plays several physiological roles in treating diabetes and in protecting the brain. Recent clinical trials testing 4 different GLP-1 class drugs in phase 2 trials showed a clear correlation between neuroprotection and the ability to cross the BBB. Exenatide and Lixisenatide both showed excellent protective effects in patients Parkinson's disease (PD) and both drugs can readily cross the BBB.
View Article and Find Full Text PDFAlzheimers Dement
December 2024
NYU Grossman School of Medicine, New York, NY, USA; NYU, New York City, NY, USA.
Background: Astrocytes, a major glial cell in the central nervous system (CNS), can become reactive in response to inflammation or injury, and release toxic factors that kill specific subtypes of neurons. Over the past several decades, many groups report that reactive astrocytes are present in the brains of patients with Alzheimer's disease, as well as several other neurodegenerative diseases. In addition, reactive astrocyte sub-types most associated with these diseases are now reported to be present during CNS cancers of several types.
View Article and Find Full Text PDFAlzheimers Dement
December 2024
Yonsei University, Incheon, Incheon, Korea, Republic of (South).
Background: Cyclin Y (CCNY) is a member of cyclin protein family inhibiting long-term synaptic plasticity, which is related to the learning and memory function in neuronal system. Recently, CCNY has been reported to associate with the cognitive deficits in Alzheimer's disease (AD).
Method: In this study, we discovered PFTAIRE peptide to diminish CCNY protein level and to ameliorate cognitive dysfunction in AD.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!