Three-dimensional biofilm image reconstruction for assessing structural parameters.

Biotechnol Bioeng

The Gene and Linda Voiland School of Chemical Engineering and Bioengineering, Washington State University, Pullman, Washington.

Published: August 2020

Parameters representing three-dimensional (3D) biofilm structure are quantified from confocal laser-scanning microscope (CLSM) images. These 3D parameters describe the distribution of biomass pixels within the space occupied by a biofilm; however, they lack a direct connection to biofilm activity. As a result, researchers choose a handful of parameters without there being a consensus on a standard set of parameters. We hypothesized that a select 3D parameter set could be used to reconstruct a biofilm image and that the reconstructed and original biofilm images would have similar activities. To test this hypothesis, an algorithm was developed to reconstruct a biofilm image with parameters identical to those of the original CLSM image. We introduced an objective method to assess the reconstruction algorithm by comparing the activities of the original and reconstructed biofilm images. We found that biofilm images with identical structural parameters showed nearly identical activities and substrate concentration profiles. This implies that the set containing all common structural parameters can successfully describe biofilm structure. This finding is significant, as it opens the door to the next step, of finding a smaller standard set of biofilm structural parameters that can be used to compare biofilm structure.

Download full-text PDF

Source
http://dx.doi.org/10.1002/bit.27363DOI Listing

Publication Analysis

Top Keywords

structural parameters
16
biofilm image
12
biofilm structure
12
biofilm images
12
biofilm
11
parameters
9
three-dimensional biofilm
8
parameters describe
8
standard set
8
reconstruct biofilm
8

Similar Publications

Background: Alzheimer's disease (AD) is the most prevalent cause of dementia accounting for an estimated 60% to 80% of cases. Despite advances in the research field, developing truly effective therapies for AD symptoms remains a major challenge. Sweet almond contain nutrients that have the potential of combating age-related brain dysfunction, by improving learning, memory and neurocognitive performance.

View Article and Find Full Text PDF

Background: The TREAT-AD centers aim to improve Alzheimer's Disease (AD) research by offering free, high-quality tools and technologies. Lyn is a tyrosine kinase that belongs to the Src family kinases. The expression of Lyn and its activity have been implicated in AD.

View Article and Find Full Text PDF

Background: Transcutaneous stimulation of the auricular branch of the vagus nerve (tVNS) was administered to participants diagnosed with mild cognitive impairment (MCI) to improve word-list memory (primary outcome) and other cognitive skills.

Method: A randomized, double-blind, placebo-controlled crossover design was used for this trial. Participants with MCI (n = 59) were sorted into one of two sequences: Sham-tVNS or tVNS-Sham.

View Article and Find Full Text PDF

Background: Amid recent approvals, early Alzheimer's disease (AD) remains an active area of treatment development, but research on the utility of recruitment incentives in early AD trials remains limited. We examined how trial design features impact enrollment decisions among Mild Cognitive Impairment (MCI) patients and their family members.

Method: We performed a conjoint analysis experiment to compare early AD patients' preferences for trial features.

View Article and Find Full Text PDF

In this study, we worked at the CCSD/aug-cc-pVTZ level to obtain the conformers of glycine in its neutral and zwitterionic forms in the gas and water phases. We then computed the NMR properties (spin-spin coupling constants and nuclear magnetic shieldings) at the SOPPA/aug-cc-pVTZ-J level. We attempt to elucidate the apparent discrepancy arising from two previous works by Valverde et al.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!