Plant NLR immune receptor Tm-22 activation requires NB-ARC domain-mediated self-association of CC domain.

PLoS Pathog

MOE Key Laboratory of Bioinformatics, Center for Plant Biology, Tsinghua-Peking Joint Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, China.

Published: April 2020

The nucleotide-binding, leucine-rich repeat-containing (NLR) class of immune receptors of plants and animals recognize pathogen-encoded proteins and trigger host defenses. Although animal NLRs form oligomers upon pathogen recognition to activate downstream signaling, the mechanisms of plant NLR activation remain largely elusive. Tm-22 is a plasma membrane (PM)-localized coiled coil (CC)-type NLR and confers resistance to Tobacco mosaic virus (TMV) by recognizing its viral movement protein (MP). In this study, we found that Tm-22 self-associates upon recognition of MP. The CC domain of Tm-22 is the signaling domain and its function requires PM localization and self-association. The nucleotide-binding (NB-ARC) domain is important for Tm-22 self-interaction and regulates activation of the CC domain through its nucleotide-binding and self-association. (d)ATP binding may alter the NB-ARC conformation to release its suppression of Tm-22 CC domain-mediated cell death. Our findings provide the first example of signaling domain for PM-localized NLR and insight into PM-localized NLR activation.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7205312PMC
http://dx.doi.org/10.1371/journal.ppat.1008475DOI Listing

Publication Analysis

Top Keywords

domain nucleotide-binding
8
nlr activation
8
domain tm-22
8
signaling domain
8
pm-localized nlr
8
domain
6
nlr
5
tm-22
5
plant nlr immune receptor
4
receptor tm-22 activation
4

Similar Publications

As a key inflammatory factor, the nucleotide-binding oligomerization domain (NOD)-like receptor protein 3 (NLRP3) inflammasome plays a crucial role in neuroinflammation and the progression of neurodegenerative diseases. Dysregulation of NLRP3 signaling can trigger various inflammatory responses in the brain, contributing to the development of neurodegenerative diseases such as ischemic stroke, vascular dementia (VaD), Alzheimer's disease (AD), Parkinson's disease (PD), and amyotrophic lateral sclerosis (ALS). Therefore, the NLRP3 signaling pathway is a promising therapeutic target for the treatment of neurodegenerative diseases, including VaD.

View Article and Find Full Text PDF
Article Synopsis
  • HCN ion channels play a key role in cellular activity and pain perception, with propofol acting as an analgesic by inhibiting their function.
  • Researchers used a propofol analog to pinpoint binding sites on the human HCN1 isoform, revealing a specific pocket formed by certain residues in the channel.
  • Mutations in this binding pocket affect propofol's ability to modulate HCN1 currents, highlighting its specific binding mechanism and offering insights for developing targeted HCN channel modulators.
View Article and Find Full Text PDF

Objective To investigate the role and possible mechanism of glycogen synthase kinase-3 beta (GSK-3β)/cAMP response element binding protein (CREB) signaling pathway in regulating macrophage pyroptosis in the pathogenesis and development of diabetic foot ulcer (DFU). Methods Thirty rats were randomly divided into control group, DFU group and GSK-3β inhibited group, with 10 rats in each group. Fasting blood glucose (FBG) was detected by dynamic blood glucose detector.

View Article and Find Full Text PDF

Objective: Hypertension significantly contributes to morbidity and mortality. Nuclear receptor subfamily 4 group a member 1 (Nur77) participates in regulating oxidative stress, but the mechanism in hypertension remains unclear. This study aimed to explore the function of Nur77 in oxidative stress induced by Angiotensin II (Ang II) in vascular smooth muscle cells (VSMCs) in hypertension.

View Article and Find Full Text PDF

Genome-wide association study of anterior uveitis.

Br J Ophthalmol

December 2024

Department of Ophthalmology and Medical Research Center, Oulu University Hospital; Research Unit of Clinical Medicine, University of Oulu, Oulu, Finland.

Background/aims: The purpose of this study is to define genetic factors associated with anterior uveitis through genome-wide association study (GWAS).

Methods: In this GWAS meta-analysis, we combined data from the FinnGen, Estonian Biobank and UK Biobank with a total of 12 205 anterior uveitis cases and 917 145 controls. We performed a phenome-wide association study (PheWAS) to investigate associations across phenotypes and traits.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!