Genetically modified (GM) crops are one of the most valuable tools of modern biotechnology that secure yield potential needed to sustain the global agricultural demands for food, feed, fiber, and energy. Crossing single GM events through conventional breeding has proven to be an effective way to pyramid GM traits from individual events and increase yield protection in the resulting combined products. Even though years of research and commercialization of GM crops show that these organisms are safe and raise no additional biosafety concerns, some regulatory agencies still require risk assessments for these products. We sought out to investigate whether stacking single GM events would have a significant impact on agronomic and phenotypic plant characteristics in soybean, maize, and cotton. Several replicated field trials designed as randomized complete blocks were conducted by Monsanto Regulatory Department from 2008 to 2017 in field sites representative of cultivation regions in Brazil. In total, twenty-one single and stacked GM materials currently approved for in-country commercial use were grown with the corresponding conventional counterparts and commercially available GM/non-GM references. The generated data were presented to the Brazilian regulatory agency CTNBio (National Biosafety Technical Committee) over the years to request regulatory approvals for the single and stacked products, in compliance with the existing normatives. Data was submitted to analysis of variance and differences between GM and control materials were assessed using t-test with a 5% significance level. Data indicated the predominance of similarities and neglectable differences between single and stacked GM crops when compared to conventional counterpart. Our results support the conclusion that combining GM events through conventional breeding does not alter agronomic or phenotypic plant characteristics in these stacked crops. This is compatible with a growing weight of evidence that indicates this long-adopted strategy does not increase the risks associated with GM materials. It also provides evidence to support the review and modernization of the existing regulatory normatives to no longer require additional risk assessments of GM stacks comprised of previously approved single events for biotechnology-derived crops. The data analyzed confirms that the risk assessment of the individual events is sufficient to demonstrate the safety of the stacked products, which deliver significant benefits to growers and to the environment.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7185713PMC
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0231733PLOS

Publication Analysis

Top Keywords

single stacked
16
agronomic phenotypic
12
phenotypic plant
12
plant characteristics
12
single events
12
soybean maize
8
maize cotton
8
events conventional
8
conventional breeding
8
individual events
8

Similar Publications

Continuous Characterization of Insoluble Particles in Ice Cores Using the Single-Particle Extinction and Scattering Method.

Environ Sci Technol

December 2024

Climate and Environmental Physics, Physics Institute, and Oeschger Centre for Climate Change Research, University of Bern, Sidlerstrasse 5, Bern 3012, Switzerland.

This study presents the integration of the single-particle extinction and scattering (SPES) method in a continuous flow analysis (CFA) setup. Continuous measurements with the instrument allow for the characterization of water-insoluble particles in ice cores at high resolution with a minimized risk of contamination. The SPES method can be used to investigate particles smaller than 1 μm, which previously could not be detected by instruments typically used in CFA.

View Article and Find Full Text PDF

Background: In clinical practices, doctors usually need to synthesize several single-modality medical images for diagnosis, which is a time-consuming and costly process. With this background, multimodal medical image fusion (MMIF) techniques have emerged to synthesize medical images of different modalities, providing a comprehensive and objective interpretation of the lesion.

Purpose: Although existing MMIF approaches have shown promising results, they often overlook the importance of multiscale feature diversity and attention interaction, which are essential for superior visual outcomes.

View Article and Find Full Text PDF

TiZrMoC coatings were deposited on Si(100) substrates using a DC dual magnetron sputtering. The composition was controlled by adjusting the sputtering parameters of the TiZrMo and graphite targets. The influence of graphite target current on the resulting coating properties was explored.

View Article and Find Full Text PDF

Carbon-supported single-atom catalysts exhibit exceptional properties in acidic CO reduction. However, traditional carbon supports fall short in building high-site-utilization and CO-rich interfacial environments, and the structural evolution of single-atom metals and catalytic mechanisms under realistic conditions remain ambiguous. Herein, an interconnected mesoporous carbon nanofiber and carbon nanosheet network (IPCF@CS) is reported, derived from microphase-separated block copolymer, to improve catalytic efficiency of isolated Ni.

View Article and Find Full Text PDF

Covalent organic nanotubes offer enhanced stability, robustness, and functionality, compared to their noncovalent counterparts. This study explores constructing polydiacetylene (PDA) nanotubes using a two-step process: self-assembly via noncovalent interactions followed by UV-induced polymerization of a diacetylene template. A promising building block consisting of a hydrogen-bonding headgroup, barbituric acid, linked to a linear diacetylene chain was prepared.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!