AI Article Synopsis

  • Researchers are exploring how frequency encoding of quantum information, alongside fiber and integrated photonic technologies, can streamline all-photonic quantum networks.
  • The main challenge is achieving controlled interactions between single photons of different frequencies across varying bandwidths.
  • This study successfully demonstrates frequency-domain interference using a chip-based microresonator, achieving high interference visibility and showing that four-wave mixing can enable high-fidelity quantum operations for advanced photonic networks.*

Article Abstract

Frequency encoding of quantum information together with fiber and integrated photonic technologies can significantly reduce the complexity and resource requirements for realizing all-photonic quantum networks. The key challenge for such frequency domain processing of single photons is to realize coherent and selective interactions between quantum optical fields of different frequencies over a range of bandwidths. Here, we report frequency-domain Hong-Ou-Mandel interference with spectrally distinct photons generated from a chip-based microresonator. We use four-wave mixing to implement an active "frequency beam splitter" and achieve interference visibilities of 0.95±0.02. Our work establishes four-wave mixing as a tool for selective high-fidelity two-photon operations in the frequency domain which, combined with integrated single-photon sources, provides a building block for frequency-multiplexed photonic quantum networks.

Download full-text PDF

Source
http://dx.doi.org/10.1103/PhysRevLett.124.143601DOI Listing

Publication Analysis

Top Keywords

quantum networks
8
frequency domain
8
four-wave mixing
8
frequency-domain quantum
4
quantum interference
4
interference correlated
4
correlated photons
4
photons integrated
4
integrated microresonator
4
microresonator frequency
4

Similar Publications

Polyethylene terephthalate (PET) waste significantly contributes to the global plastic crisis, but enzymatic conversion has become an efficient and environmentally friendly strategy to combat it. Therefore, this study explored the Re-face selective depolymerization mechanisms of a novel PET-degradation peptidase, hydrolase 202. Theoretical calculations revealed that the first step, a catalytic triad-assisted nucleophilic attack, is the rate-determining step.

View Article and Find Full Text PDF

Quantum mixed-state self-attention network.

Neural Netw

January 2025

Mechanical, Electrical and Information Engineering College, Putian University, Putian, 351100, China.

Attention mechanisms have revolutionized natural language processing. Combining them with quantum computing aims to further advance this technology. This paper introduces a novel Quantum Mixed-State Self-Attention Network (QMSAN) for natural language processing tasks.

View Article and Find Full Text PDF

Compact high-bandwidth single-beam optically-pumped magnetometer for biomagnetic measurement.

Biomed Opt Express

January 2025

State Key Laboratory of Advanced Optical Communication Systems and Networks, School of Electronics, and Center for Quantum Information Technology, Peking University, Beijing 100871, China.

Optically-pumped magnetometer (OPM) has been of increasing interest for biomagnetic measurements due to its low cost and portability compared with superconducting quantum interference devices (SQUID). Miniaturized spin-exchange-relaxation-free (SERF) OPMs typically have limited bandwidth (less than a few hundred Hertz), making it difficult to measure high-frequency biomagnetic signals such as the magnetocardiography (MCG) signal of the mouse. Existing experiments mainly use SQUID systems to measure the signal.

View Article and Find Full Text PDF

LiNbO domain structures have been widely applied in nonlinear beam shaping, quantum light generation, and nonvolatile ferroelectric memory. The recent developments in nanoscale domain engineering techniques make it possible to fabricate sub-diffracted nanodomains in LiNbO crystal for high-speed modulation and high-capacity storage. However, it still lacks a feasible and efficient way to characterize these nanoscale domains.

View Article and Find Full Text PDF

Quantum key distribution (QKD) is critical for future proofed secure communication. Satellites will be necessary to mediate QKD on a global scale. The limitations of the existing quantum memory and repeater technology mean that twin-field QKD (TF-QKD) provides the most feasible near-term solution to perform QKD with an untrusted satellite.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!