Laser-induced fluorescence spectroscopy for early disease detection in grapefruit plants.

Photochem Photobiol Sci

Agri. & Biophotonics Division, National Institute of Lasers and Optronics College, Pakistan Institute of Engineering and Applied Sciences (NILOP-C, PIEAS), 45650, Nilore, Islamabad, Pakistan.

Published: May 2020

Biotic and abiotic stress both cause a considerable decrease in the chlorophyll content in plant leaves, which provides a means for the early diagnosis of diseases in plants. The emergence of diseases affects the fluorescence of phenolic compounds and chlorophyll, which have emissions located at 530, 686 and 735 nm. Herein, it was found that the intensity of the emission band of phenolic compounds at 530 nm increased and that of chlorophyll at 735 nm decreased with the onset of diseases. Statistical analysis through principal component analysis (PCA) and partial least squares regression (PLSR) was performed, which differentiated between apparently healthy leaf sites and diseased leaves, providing a basis for the detection of diseases in the early stages. The PLSR model was validated through the coefficient of determination (R), standard error of prediction (SEP) and standard error of calibration (SEC) with the values of 0.99, 0.394 and 0.0.401, respectively, which authenticated the model. The prediction accuracy of the model was evaluated through root mean square error in prediction (RMSEP), with a value of 0.14, by predicting 22 unknown emission spectra of different leaf sites. Both the PCA and PLSR models produced similar results, proving that fluorescence spectroscopy is an excellent tool for early disease detection in plants.

Download full-text PDF

Source
http://dx.doi.org/10.1039/c9pp00368aDOI Listing

Publication Analysis

Top Keywords

fluorescence spectroscopy
8
early disease
8
disease detection
8
phenolic compounds
8
leaf sites
8
standard error
8
error prediction
8
laser-induced fluorescence
4
early
4
spectroscopy early
4

Similar Publications

A series of 2-pyridone[α]-fused BOPHYs - were prepared via a two-step procedure involving the preparation of enamine, followed by an intramolecular heterocyclization reaction. In addition to being fully conjugated with the BOPHY core pyridone fragment, BOPHYs and have a pyridine group connected to the BOPHY core via one- or two -CH- groups. New BOPHYs were characterized by spectroscopy as well as X-ray diffraction.

View Article and Find Full Text PDF

Analysis of Drug Molecules in Living Cells.

Crit Rev Anal Chem

January 2025

Department of Bioengineering, Faculty of Engineering, The University of Edinburgh, Edinburgh, UK.

Cells are the fundamental units of life, comprising a highly concentrated and complex assembly of biomolecules that interact dynamic ally across spatial and temporal scales. Living cells are constantly undergoing dynamic processes, therefore, to understand the interactions between drug molecules and living cells is of paramount importance in the biomedical sciences and pharmaceutical development. Compared with traditional end-point assays and fixed cell analysis, analysis of drug molecules in living cells can provide more insight into the effects of drugs on cells in real-time and allowing for a better understanding of drug mechanisms and effects, which will contribute to the development of drug developing and testing and personalize medicine.

View Article and Find Full Text PDF

Study of the Antagonism of Biocontrol Strains Against the Blue-Stain Fungus of Rubberwood.

J Fungi (Basel)

January 2025

Yunnan Provincial Key Laboratory of Wood Adhesives and Glued Products, Southwest Forestry University, Kunming 650224, China.

Wood blue staining is one of the most common wood defects, which commonly occurs in rubberwood and Masson pine. It not only affects the appearance of the wood, but also its properties. In this study, rubberwood from Xishuangbanna was examined.

View Article and Find Full Text PDF

A fluorescence probe for "switch-on" detection of alkaline phosphatase (ALP) was developed based on Au nanoclusters anchored MnO nanosheets (Au NCs-MnO NSs), which were synthesized using bovine serum albumin (BSA) as template through a simple one-pot approach. In the sensing system, MnO NSs function as both energy acceptors and target identifiers, effectively quenches the fluorescence of Au NCs via fluorescence resonance energy transfer (FRET). The presence of ALP catalyzes the hydrolysis of L-ascorbic acid-2-phosphate (AAP) to ascorbic acid (AA), reducing MnO NSs to Mn and facilitate the fluorescence recovery of Au NCs.

View Article and Find Full Text PDF

Polydiacetylenes (PDAs) are conjugated polymers that are well known for their colorimetric transition from blue to red with the application of energetic stimulus. Sensing platforms based on polymerized diacetylene surfactant vesicles and other structures have been widely demonstrated for various colorimetric biosensing applications. Although less studied and utilized, the transition also results in a change from a non-fluorescent to a highly fluorescent state, making polydiacetylenes useful for both colorimetric and fluorogenic sensing applications.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!