Current standard of care dressings are unsatisfactorily inefficacious for the treatment of chronic wounds. Chronic inflammation is the primary cause of the long-term incurable nature of chronic wounds. Herein, an absorbable nanofibrous hydrogel is developed for synergistic modulation of the inflammation microenvironment to accelerate chronic diabetic wound healing. The electrospun thioether grafted hyaluronic acid nanofibers (FHHA-S/Fe) are able to form a nanofibrous hydrogel in situ on the wound bed. This hydrogel degrades and is absorbed gradually within 3 days. The grafted thioethers on HHA can scavenge the reactive oxygen species quickly in the early inflammation phase to relieve the inflammation reactions. Additionally, the HHA itself is able to promote the transformation of the gathered M1 macrophages to the M2 phenotype, thus synergistically accelerating the wound healing phase transition from inflammation to proliferation and remodeling. On the chronic diabetic wound model, the average remaining wound area after FHHA-S/Fe treatment is much smaller than both that of FHHA/Fe without grafted thioethers and the control group, especially in the early wound healing stage. Therefore, this facile dressing strategy with intrinsic dual modulation mechanisms of the wound inflammation microenvironment may act as an effective and safe treatment strategy for chronic wound management.

Download full-text PDF

Source
http://dx.doi.org/10.1002/adhm.202000198DOI Listing

Publication Analysis

Top Keywords

wound healing
16
nanofibrous hydrogel
12
inflammation microenvironment
12
chronic diabetic
12
diabetic wound
12
wound
9
thioether grafted
8
grafted hyaluronic
8
hyaluronic acid
8
synergistic modulation
8

Similar Publications

Purpose: While treatment modalities for Maisonneuve fractures involving the proximal third of the fibula are established, no studies to date have reported outcomes associated with syndesmotic-only fixation of middle third fibular shaft fractures. The purpose of this study was to evaluate outcomes associated with syndesmotic-only fixation in the treatment of Maisonneuve fractures involving the middle third of the fibula.

Methods: A retrospective review was conducted on 257 cases of syndesmotic ankle instability with associated fibular fractures at a level 1 trauma center between 2013 and 2023.

View Article and Find Full Text PDF

Silencing of FZD7 Inhibits Endometriotic Cell Viability, Migration, and Angiogenesis by Promoting Ferroptosis.

Cell Biochem Biophys

January 2025

Department of Obstetrics and Gynecology, Lishui Municipal Central Hospital, Lishui, Zhejiang, 323000, China.

Background: Endometriosis (EMS) is a difficult gynecological disease to cure. Frizzled-7 (FZD7) has been shown to be associated with the development of EMS, but its specific mechanism remains unclarified. This study aims to explore the role of FZD7 in EMS.

View Article and Find Full Text PDF

Biocompatibility of Phosphorus Dendrimers and Their Antibacterial Properties as Potential Agents for Supporting Wound Healing.

Mol Pharm

January 2025

Department of General Biophysics, Faculty of Biology and Environmental Protection, University of Lodz, 141/143 Pomorska St., 90-236 Lodz, Poland.

Dendrimers are a wide range of nanoparticles with desirable properties that can be used in many areas of medicine. However, little is known about their potential use in wound healing. This study examined the properties of phosphorus dendrimers that were built on a cyclotriphosphazene core and pyrrolidinium (DPP) or piperidinium (DPH) terminated groups, to be used as potential factors that support wound healing ().

View Article and Find Full Text PDF

Sweet syndrome (SS), which is characterised by fever and erythematous tender skin lesions, has been shown to be associated with lymphoma. However, there are limited reported experiences on the wound care of SS in patients with lymphoma. This case report presents the wound care of SS in a patient with anaplastic lymphoma kinase (ALK)-positive anaplastic large cell lymphoma (ALK+ALCL).

View Article and Find Full Text PDF

Effects of adjuvant hyperbaric oxygen therapy and real-time fluorescent imaging on deep sternal wound infection: a retrospective study.

J Wound Care

January 2025

Division of Plastic Surgery, Integrated Burn & Wound Care Center, Department of Surgery, Shuang-Ho Hospital, New Taipei City, Taiwan.

Objective: Deep sternal wound infection (DSWI) is a rare but devastating complication that is estimated to occur in 1-2% of patients after median sternotomy. Current standard of care (SoC) comprises antibiotics, debridement and negative pressure wound therapy (NPWT). Hyperbaric oxygen therapy (HBOT) appears to be an effective adjuvant therapy for osteomyelitis.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!