The tomato non-ripening (nor) mutant generates a truncated 186-amino-acid protein (NOR186) and has been demonstrated previously to be a gain-of-function mutant. Here, we provide more evidence to support this view and answer the open question of whether the NAC-NOR gene is important in fruit ripening. Overexpression of NAC-NOR in the nor mutant did not restore the full ripening phenotype. Further analysis showed that the truncated NOR186 protein is located in the nucleus and binds to but does not activate the promoters of 1-aminocyclopropane-1-carboxylic acid synthase2 (SlACS2), geranylgeranyl diphosphate synthase2 (SlGgpps2), and pectate lyase (SlPL), which are involved in ethylene biosynthesis, carotenoid accumulation, and fruit softening, respectively. The activation of the promoters by the wild-type NOR protein can be inhibited by the mutant NOR186 protein. On the other hand, ethylene synthesis, carotenoid accumulation, and fruit softening were significantly inhibited in CR-NOR (CRISPR/Cas9-edited NAC-NOR) fruit compared with the wild-type, but much less severely affected than in the nor mutant, while they were accelerated in OE-NOR (overexpressed NAC-NOR) fruit. These data further indicated that nor is a gain-of-function mutation and NAC-NOR plays a significant role in ripening of wild-type fruit.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7307841 | PMC |
http://dx.doi.org/10.1093/jxb/eraa131 | DOI Listing |
J Exp Bot
January 2025
KU Leuven, BIOSYST-MeBioS, Willem de Croylaan 42, 3001 Leuven, Belgium.
Tomato (Solanum lycopersicum L.) is an important model plant whose fleshy fruit consists of well-differentiated tissues. Recently it was shown that these tissues develop hypoxia during fruit development and ripening.
View Article and Find Full Text PDFJ Exp Bot
January 2025
Advanced Genomics Unit, Center for Research and Advanced Studies (Cinvestav), Irapuato, Mexico.
Arabidopsis has served as a model plant for studying the genetic networks that guide gynoecium development. However, less is known about other species such as tomato, a model for fleshy fruit development and ripening. Here, we study in tomato the transcription factor SPATULA (SPT), a bHLH-family member that in Arabidopsis is known to be important for gynoecium development.
View Article and Find Full Text PDFHortic Res
January 2025
State Key Laboratory of Crop Stress Biology for Arid Areas, College of Horticulture, Northwest A&F University, Yangling 712100, Shaanxi, China.
Fruit firmness is an important trait for characterizing the quality and value of apple. It also serves as an indicator of fruit maturity, as it is a complex trait regulated by multiple genes. Resequencing techniques can be employed to elucidate variations in such complex fruit traits.
View Article and Find Full Text PDFHortic Res
January 2025
Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, Sichuan, China.
Sugars act as signaling molecules to modulate various growth processes and enhance plant tolerance to various abiotic and biotic stresses. Moreover, sugars contribute to the postharvest flavor in fleshy fruit crops. To date, the regulation of sugar metabolism and its effect in plant growth, fruit ripening, postharvest quality, and stress resistance remains not fully understood.
View Article and Find Full Text PDFACS Omega
January 2025
Departamento de Química, Universidade Federal do Paraná, Av. Cel. Francisco H. dos Santos, 100, Jardim das Américas, CP 19081, 81531-980 Curitiba, Paraná, Brazil.
Piper fruits are one of the main dietary sources of , a fruit-eating bat largely responsible for dispersing their seeds. To investigate the mechanism of this plant-animal interaction, ripe and unripe fruits of were collected in the morning, afternoon, and night. The volatile organic compounds (VOC) were obtained through dynamic headspace (HS) and hydrodistillation (HD) and were analyzed by gas chromatography with flame ionization detector and GC-MS, resulting in the identification of ninety-five compounds.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!