Despite decades of investigation, mechanistic details of aqueous permanganate photo-decomposition remain unclear. Here we follow photoinduced dynamics of aqueous permanganate with femtosecond spectroscopy. Photoexcitation of KMnO(aq) in the visible unleashes a sub-picosecond cascade of non-radiative transitions, leading to a distinct species which relaxes to S with a lifetime of 16 ps. Tuning excitation to the UV shows increasing formation of a metastable intermediate, which outlives our ∼1 ns window of detection. Guided by electronic structure calculations and observations from three pulse excitation experiments, we assign the 16 ps species as the lowest Jahn-Teller component of the T triplet state and suggest a plausible sequence of radiationless transitions, which rapidly populate it. In conjunction with photodecomposition quantum yields obtained from the literature, these results demonstrate that aqueous permanganate photo-decomposition proceeds through a long-lived intermediate which is formed in parallel to the triplet in less than one ps upon UV absorption. The possibility that this is the postulated highly oxidative peroxo species, a fraction of which leads to the stable (MnO + O) fragments, is discussed. Finally, periodic modulations detected in the pump-probe signal are assigned to ground-state vibrational coherences excited by impulsive Raman. Their wavelength-dependent absolute phases outline the borders between adjacent electronic transitions in the linear spectrum of permanganate.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1039/c9cp07028a | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!