A large number of organic reactions feature post-transition-state bifurcations. Selectivities in such reactions are difficult to analyze because they cannot be determined by comparing the energies of competing transition states. Molecular dynamics approaches can provide answers but are computationally very expensive. We present an algorithm that predicts the major products in bifurcating organic reactions with negligible computational cost. The method requires two transition states, two product geometries, and no additional information. The algorithm correctly predicts the major product for about 90% of the organic reactions investigated. For the remaining 10% of the reactions, the algorithm returns a warning indication that the conclusion may be uncertain. The method also reproduces the experimental and the molecular dynamics product ratios within 15% for more than 80% of the reactions. We have successfully applied the method to a trifurcating organic reaction, a carbocation rearrangement, and solvent-dependent Pummerer-like reactions, demonstrating the power of the algorithm to simplify and to help understand highly complex reactions.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/jacs.9b13449 | DOI Listing |
Anal Chim Acta
February 2025
Institute of Environmental Science, Shanxi University, Taiyuan 030006, China.
Hypochlorous acid (HClO) is a well-known inflammatory signaling molecule, while lipid droplets (LDs) are dynamic organelles closely related to inflammation. Using organic small-molecule fluorescence imaging technology to target LDs for precise monitoring of HClO is one of the most effective methods for diagnosing inflammation-related diseases. A thorough investigation of how probes detect biological markers and the influencing factors can aid in the design of probe molecules, the selection of high-performance tools, and the accuracy of disease detection.
View Article and Find Full Text PDFAnal Chim Acta
February 2025
School of Chemistry and Chemical Engineering, Nanchang University, Nanchang, 330031, China. Electronic address:
Background: Carbosulfan residues in environment is very harmful to human health. The rapid and high sensitive detection of carbosulfan residues is particularly important to guarantee human health and safety. The conventional chromatographic techniques and enzyme inhibition strategies cannot realize on-site and visual detection of carbosulfan.
View Article and Find Full Text PDFAnal Chim Acta
February 2025
Biofuel and Renewable Energy Research Center, Department of Biotechnology, Faculty of Chemical Engineering, Babol Noshirvani University of Technology, Babol, Iran.
Background: The buildup of methylparaben (MP), a broad-spectrum antimicrobial preservative with endocrine-disrupting properties, in environmental sources, especially aquatic systems, has become a significant concern due to its adverse health effects, including allergic reactions, promoting the risk of developing cancer, and inducing reproductive disorders. Hence, introducing inexpensive and easy-to-use monitoring devices for rapid, selective, and sensitive detection and quantification of MP is highly desirable. In this context, electrochemical platforms have proven to be attractive options due to their remarkable features, such as ease of fabrication and use, short response time, and acceptable sensitivity, accuracy, and selectivity.
View Article and Find Full Text PDFAnal Chim Acta
February 2025
Tianjian Laboratory of Advanced Biomedical Sciences, Institute of Advanced Biomedical Sciences, Henan International Joint Laboratory of Tumor Theranostic Cluster Materials, Henan Key Laboratory of Crystalline Molecular Functional Materials, College of Chemistry, Zhengzhou University, 450001, Zhengzhou, China. Electronic address:
Background: Integrating natural enzymes and nanomaterials exhibiting tailored enzyme-like activities is an effective strategy for the application of cascade reactions. It is essential to develop a highly efficient and robust glucose oxidase-catalase (GOx-CAT) cascade system featuring controllable enzyme activity, a reliable supply of oxygen, and improved stability for glucose depletion in cancer starvation therapy. However, the ambiguous relationship between structure and performance, and the difficulty in controlling enzyme-mimic activity, significantly hinder their broader application.
View Article and Find Full Text PDFJ Biotechnol
January 2025
Analysis and Testing Center, Nanjing Normal University, Nanjing, 210023, China. Electronic address:
Chondroitin sulfate (CS) is a structurally complex anionic polysaccharide widely used in medical, cosmetic and food applications. Enzymatic catalysis is an important strategy for synthesizing CS with uniform chain lengths and well-defined structures. However, the industrial application of glycosyltransferases is hindered by limitations such as low expression yields, poor stability, and challenges in reuse.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!