Cancer cells can activate the alternative lengthening of telomeres (ALT) pathway to promote replicative immortality. The ALT pathway promotes telomere elongation through a homologous recombination pathway known as break-induced replication (BIR), which is often engaged to repair single-ended double-stranded breaks (DSBs). Single-ended DSBs are resected to promote strand invasion and facilitate the formation of a local displacement loop (D-loop), which can trigger DNA synthesis, and ultimately promote telomere elongation. However, the exact proteins involved in the maturation, migration, and resolution of D-loops at ALT telomeres are unclear. In vitro, the DNA translocase RAD54 both binds D-loops and promotes branch migration suggesting that RAD54 may function to promote ALT activity. Here, we demonstrate that RAD54 is enriched at ALT telomeres and promotes telomeric DNA synthesis through its ATPase-dependent branch migration activity. Loss of RAD54 leads to the formation of unresolved recombination intermediates at telomeres that form ultra-fine anaphase bridges in mitosis. These data demonstrate an important role for RAD54 in promoting ALT-mediated telomere synthesis.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7271314PMC
http://dx.doi.org/10.15252/embr.201949495DOI Listing

Publication Analysis

Top Keywords

branch migration
12
alternative lengthening
8
lengthening telomeres
8
alt pathway
8
telomere elongation
8
dna synthesis
8
alt telomeres
8
rad54
6
telomeres
5
alt
5

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!