Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8275551PMC
http://dx.doi.org/10.1007/s10508-020-01716-9DOI Listing

Publication Analysis

Top Keywords

applicability theory
4
theory planned
4
planned behavior
4
behavior care
4
care female
4
female genital
4
genital cutting
4
applicability
1
planned
1
behavior
1

Similar Publications

In the context of the Sustainable Development Goals (SDGs), which strive to ensure comprehensive access to fundamental water, sanitation, and hygiene (WASH) services, it is extremely imperative to prioritize communities in need and still disadvantaged. Moreover, tackling the worldwide sanitation crisis entails advancing the development of productive and sustainable sanitation systems and infrastructure. Sanitation planning is a multidimensional exercise encompassing multiple dimensions, stakeholders, and strategies, typically with conflicting objectives.

View Article and Find Full Text PDF

Ultrasensitive Flexible NO Sensors with Remote-Controllable ADC-Electropolymerized Conducting Polymers on Plastic.

ACS Nano

January 2025

SKKU Advanced Institute of Nanotechnology (SAINT) and Department of Nano Science and Technology, Sungkyunkwan University, Suwon 16419, Republic of Korea.

Alternating- and direct-current (ADC) bipolar electropolymerization (EP) offers an efficient and scalable approach for the lateral synthesis of conjugated macromolecules, enabling the simultaneous polymerization and deposition of large conducting polymer films with intriguing fractal-like ramified topographies onto arbitrary insulating substrates under remote control. In this study, we presented the remote synthesis of poly(3,4-ethylenedioxythiophene) (PEDOT):anion sensing films on a plastic substrate, aimed at their use in flexible nitrogen dioxide (NO) gas sensors. Notably, the PEDOT:ClO films exhibited excellent gas-sensing characteristics, with a sensitivity of 54.

View Article and Find Full Text PDF

Multienergy Barrier Anti-/Deicing Surface with Excellent Photothermal Effect.

ACS Appl Mater Interfaces

January 2025

Ministry of Education Key Laboratory for the Green Preparation and Application of Functional Materials, Hubei University, Wuhan 430062, People's Republic of China.

Superhydrophobic surfaces are considered to be an effective method for anti-icing, but passive anti-icing alone is not as effective as it should be, so it is crucial to develop effective anti-icing techniques. In this study, a photothermal anti-icing structure with multienergy barriers was designed by combining active and passive anti-icing technologies and prepared by a three-step method of laser etching, hydrothermal growth of nanostructures, and chemical modification based on the Cassie-Baxter-Wenzel transition theory. The experimental results show that the static water contact angle of the prepared surface is up to 160°, the sliding angle is less than 3.

View Article and Find Full Text PDF

Microporous metal-organic frameworks (MOF) exhibit excellent carbon dioxide (CO) adsorption performance and selectivity for CO/N separation. However, the challenges associate with the recycling and reuse of MOF powders hinder their practical applications. To address these limitations, a flexible and stable MOF-based composite material was designed by immobilizing UiO-66(Zr)-(OH) onto cellulose nanofibers (CNFs) aerogels (MOF-CNFs), which featured high porosity.

View Article and Find Full Text PDF

A series of sensors, designated S3R1-S3R4, were designed and synthesized for the detection of PO ions and toxic metals, specifically Hg and Cu ions. The colorimetric detection of PO ions using these sensors exhibited a distinct visual color transition from yellow to purple in organo-aqueous media. The intrinsic cavity-like structure in the thiosemicarbazide-based derivative S3R4 significantly enhances the binding affinity for Hg and Cu ions in organic media.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!