The intense effort of investigators, in particular during the past decade, has highlighted the importance of extracellular vesicles (EVs) such as exosomes in regulating both innate and adaptive immunity in the course of a variety of infections, with clear implications for development of novel vaccines, therapeutics, and diagnostics. Current and future efforts now need to focus strongly on teasing apart the intricate and complex molecular mechanisms that operate during EV regulation of immunity. In this review, we discuss recent advances that bear on our current understanding of how EVs, including exosomes, can contribute to the innate immune functions of microglia within the central nervous system (CNS), and we also highlight future important mechanistic questions that need to be addressed. In particular, recent findings that highlight the crosstalk between autophagy and exosome pathways and their implications for innate immune functions of microglia will be presented. Microglial activation has been shown to play a key role in neuroAIDS, a neuro-infectious disease for which the importance of exosome functions, including exosome-autophagy interplay, has been reported. The importance of exosomes and exosome-autophagy crosstalk involving microglia has also been shown for the Parkinson's disease (PD), a neurodegenerative disease that is thought to be linked with immune dysfunction and involve infectious agents as trigger. Considering the accumulation of recent findings and the vibrancy of the EV field, we anticipate that future studies will continue to have a deep impact on our understanding of the CNS pathologies that are influenced by the functions of microglia and of the infectious disease mechanisms in general. Graphical Abstract.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7483331 | PMC |
http://dx.doi.org/10.1007/s11481-020-09916-9 | DOI Listing |
J Transl Med
January 2025
Division of Spine, Department of Orthopedics, Tongji Hospital affiliated to Tongji University, Tongji University School of Medicine, Shanghai, 200065, China.
Background: Ferroptosis and immune responses are critical pathological events in spinal cord injury (SCI), whereas relative molecular and cellular mechanisms remain unclear.
Methods: Micro-array datasets (GSE45006, GSE69334), RNA sequencing (RNA-seq) dataset (GSE151371), spatial transcriptome datasets (GSE214349, GSE184369), and single cell RNA sequencing (scRNA-seq) datasets (GSE162610, GSE226286) were available from the Gene Expression Omnibus (GEO) database. Through weighted gene co-expression network analysis and differential expression analysis in GSE45006, we identified differentially expressed time- and immune-related genes (DETIRGs) associated with chronic SCI and differentially expressed ferroptosis- and immune-related genes (DEFIRGs), which were validated in GSE151371.
J Control Release
January 2025
School of Medicine, Chongqing University, 131 Yubei Street, Shapingba District, Chongqing 400044, China. Electronic address:
Aging is a critical factor in the onset and progression of neurodegenerative diseases and cognitive decline, with aging-related neuroinflammation and cellular senescence being major contributors. In the aging brain, the cerebral vascular endothelium overexpresses vascular cell adhesion molecule 1 (VCAM1), activating microglia and leading to neuroinflammation and cognitive impairment. Quercetin, a natural neuroprotective agent widely used for treating neurodegenerative diseases, their therapeutic efficacy, however, is limited by its poor water solubility and inability to penetrate the blood-brain barrier (BBB).
View Article and Find Full Text PDFArch Biochem Biophys
January 2025
Department of Spinal Surgery, Orthopedic Medical Center, Zhujiang Hospital, Southern Medical University, Guangzhou 510280, China. Electronic address:
Polarization of microglia following spinal cord injury (SCI) is a pivotal pathological process of secondary injury. Although differentiation antagonistic nonprotein coding RNA (DANCR) has been implicated in immune and inflammatory responses across various diseases, its role in SCI still unclear. This research aimed to clarify the underlying mechanisms of DANCR in SCI recovery by investigating its expression pattern in microglia.
View Article and Find Full Text PDFJ Neuroimmune Pharmacol
January 2025
Pharmacy Department, Baotou Central Hospital, Baotou, 014040, Inner Mongolia, China.
Microglial polarization and ferroptosis are important pathological features in Alzheimer's disease (AD). Ghrelin, a brain-gut hormone, has potential neuroprotective effects in AD. This study aimed to explore the potential mechanisms by which ghrelin regulates the progression of AD, as well as the crosstalk between microglial polarization and ferroptosis.
View Article and Find Full Text PDFNutrients
December 2024
Department of Environmental and Prevention Sciences, University of Ferrara, 44121 Ferrara, Italy.
Background: A neuroinflammatory disease such as Alzheimer's disease, presents a significant challenge in neurotherapeutics, particularly due to the complex etiology and allostatic factors, referred to as CNS stressors, that accelerate the development and progression of the disease. These CNS stressors include cerebral hypo-glucose metabolism, hyperinsulinemia, mitochondrial dysfunction, oxidative stress, impairment of neuronal autophagy, hypoxic insults and neuroinflammation. This study aims to explore the efficacy and safety of DAG-MAG-ΒHB, a novel ketone diester, in mitigating these risk factors by sustaining therapeutic ketosis, independent of conventional metabolic pathways.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!