Boosting the hole transport of conductive polymers by regulating the ion ratio in ionic liquid additives.

Phys Chem Chem Phys

Beijing Key Laboratory of Ionic Liquids Clean Process, CAS Key Laboratory of Green Process and Engineering, State Key Laboratory of Multiphase Complex Systems, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, People's Republic of China.

Published: May 2020

AI Article Synopsis

  • PEDOT is a promising material in organic electronics due to its high conductivity and flexibility, and it can be enhanced by using ionic liquids (ILs) with varying cation and anion ratios.
  • Dynamics simulations and quantum mechanics computations showed that specific ion ratios (2:1, 3:1, 4:1) significantly improved the hole mobility of PEDOT, achieving nearly 100-fold conductivity enhancement compared to the original material.
  • This improvement is attributed to the ordering of PEDOT's molecular structure and the active role of anions in facilitating charge transport, also increasing the material's electron-donating ability.

Article Abstract

Poly(3,4-ethylenedioxythiophene) (PEDOT) has aroused great interest in organic electrics because of its high electrical conductivity and mechanical flexibility. To improve the charge transport, it can act as an ionic liquid (IL) additive due to its ion characteristics and high electrical conductivity. Herein, we investigated the hole-transport performance of PEDOT treated by ILs featuring specific ion ratios (4 : 1, 3 : 1, 2 : 1, 1 : 1, 1 : 2, 1 : 3, and 1 : 4) of the cation and anion through classical dynamics simulations and quantum mechanics computations. The hole mobility of the amorphous PEDOT, constituting nine EDOT monomers, could be improved to 16.81, 18.03, and 10.14 cm2 V-1 s-1 when synergistically regulating the ion ratio to 2 : 1, 3 : 1, and 4 : 1. Consequently, these ratios potentially achieved nearly a 100-fold improvement in the electrical conductivity with respect to the pristine system. The improvements mainly stemmed from the fact that decreasing the amount of anions in ILs and prolonging the chain length of PEDOT yielded an ordered face-to-face π-π stacking. The electronic coupling and charge excitation further confirmed that the anions play an active role in tunneling the hole transport in ILs/heterogeneous PEDOT, and the highest occupied molecular orbital (HOMO) energy level of PEDOT was up-shifted significantly after treatment by the ratios of 2 : 1, 3 : 1, and 4 : 1, which favored the electron-donating ability and was in line with the extraordinary enhancement of the hole mobility. Our results imply that regulating the ion ratio in ILs is a novel strategy for modulating the electronic properties and π-stacked morphology of PEDOT.

Download full-text PDF

Source
http://dx.doi.org/10.1039/d0cp01164aDOI Listing

Publication Analysis

Top Keywords

regulating ion
12
ion ratio
12
electrical conductivity
12
hole transport
8
ionic liquid
8
high electrical
8
hole mobility
8
2  1 3  1
8
3  1 4  1
8
pedot
7

Similar Publications

The bipolar disorder (BD) risk gene ANK3 encodes the scaffolding protein AnkyrinG (AnkG). In neurons, AnkG regulates polarity and ion channel clustering at axon initial segments and nodes of Ranvier. Disruption of neuronal AnkG causes BD-like phenotypes in mice.

View Article and Find Full Text PDF

Malate initiates a proton-sensing pathway essential for pH regulation of inflammation.

Signal Transduct Target Ther

December 2024

Department of Orthopedic Surgery/Sports Medicine Center, Southwest Hospital, Army Medical University, Chongqing, 400038, China.

Metabolites can double as a signaling modality that initiates physiological adaptations. Metabolism, a chemical language encoding biological information, has been recognized as a powerful principle directing inflammatory responses. Cytosolic pH is a regulator of inflammatory response in macrophages.

View Article and Find Full Text PDF

Titin is the third contractile filament in the sarcomere, and it plays a critical role in sarcomere integrity and both passive and active tension. Unlike the thick and thin filaments, which are polymers of myosin and actin, respectively, titin is a single protein that spans from Z-disk to M-line. The N2A region within titin has been identified as a signaling hub for the muscle and is shown to be involved in multiple interactions.

View Article and Find Full Text PDF

Aqueous zinc-ion batteries (AZIBs) stand out among many energy storage systems due to their many merits, and it's expected to become an alternative to the prevailing alkali metal ion batteries. Nevertheless, the cumbersome manufacturing process and the high cost of conventional separators make them unfavorable for large-scale applications. Herein, inspired by the unique nature of cellulose and ZrO, a Janus cellulose fiber (CF)/polyvinyl alcohol (PVA)/ZrO separator is prepared via the vacuum filtration method.

View Article and Find Full Text PDF

The role of SGK1 in neurologic diseases: A friend or foe?

IBRO Neurosci Rep

December 2024

Department of Biotechnology, Basic Medical School, Guangdong Medical University, Dongguan 523808, China.

Serum and glucocorticoid-regulated kinase 1 (SGK1), a member of the AGC family of serine/threonine protein kinases, is one of the most conserved protein kinases in eukaryotic evolution. SGK1 is expressed to varying degrees in various types of cells throughout the body, and plays an important role in hypertension, ion channels, oxidative stress, neurological disorders, and cardiovascular regulation. In recent years, a number of scholars have devoted themselves to the study of the role and function of SGK1 in neurological diseases.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!