Fungicides are used in the agricultural sector against the harmful action of fungi, however they are potential toxic agents for the environment and the living organisms. Benomyl is a widely encountered benzimidazole fungicide that exerts its toxicity via inhibiting microtubule formation in the nervous system and the male reproductive and endocrine systems, whilst it is a known teratogen. Since toxic effects of benomyl and its molecular mechanisms are not fully understood, we aimed to detect its neurotoxic potential via evaluating cytotoxicity, oxidative stress and apoptosis in SH-SY5Y cell line. The cells were incubated with benomyl in a concentration range between 1 and 6 μM for 24 h. Our results indicated a concentration-dependent enhancement of reactive oxygen species measured through flow cytometry and DNA damage evaluated via the comet assay. Additionally, it induced apoptosis in all tested concentrations. According to the findings of the present study, benomyl is a xenobiotic, which it appears to exert its toxic action via a redox-related mechanism that, finally, induces cell apoptosis and death. We believe that this study will offer further insight in the toxicity mechanism of benomyl, although further studies are recommended in order to elucidate these mechanisms in the molecular level.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7175046 | PMC |
http://dx.doi.org/10.1016/j.toxrep.2020.04.001 | DOI Listing |
J Agric Food Chem
January 2025
Fujian Engineering Research Center for Green Pest Management/Fujian Key Laboratory for Monitoring and Integrated Management of Crop Pests/East China Branch of the National Center for Agricultural Biosafety Sciences, Institute of Plant Protection, Fujian Academy of Agricultural Sciences, Fuzhou 350013, China.
Azole and benzimidazole fungicides are widely used agrochemicals to prevent and treat fungal growth and are frequently detected in aquatic environments. Here, we aimed to assess the aquatic ecological risks of ten currently used azole and benzimidazole fungicides, which with the aryl hydrocarbon receptor (AhR) agonistic activity, and their transformation products (TPs). We obtained over 400 types of aerobic TPs for ten fungicides.
View Article and Find Full Text PDFMol Plant Pathol
January 2025
Plant Pathology Laboratory, School of Plant and Environmental Sciences, Alson H. Smith Jr. Agricultural Research and Extension Center, Virginia Polytechnic Institute and State University, Winchester, Virginia, USA.
Unlabelled: Apple bitter rot is caused by various Colletotrichum spp. that threaten apple production globally resulting in millions of dollars in damage annually. The fungus causes a decline in fruit quality and yield, eventually rotting the fruit and rendering it inedible.
View Article and Find Full Text PDFEnviron Toxicol Pharmacol
January 2025
Drug Metabolism and Toxicology Research Laboratories, Department of Biochemistry, College of Medicine, University of Ibadan, Ibadan, Nigeria.
Carbendazim is widely applied in agriculture to control various fungal diseases during pre-harvest and post-harvest processes owing to its efficacy and cost-effectiveness. However, environmental and food contamination by carbendazim has become a global health issue. Indeed, the declining biodiversity of beneficial insects owing to agricultural intensification is currently of keen concern to the scientific community.
View Article and Find Full Text PDFMycobiology
November 2024
Department of Chemistry, College of Science, King Saud University, Riyadh, Saudi Arabia.
Mitigation of the environment from hazardous pesticides is clamant for all living things. The behavior of the fungicide Fuberidazole was investigated toward biodegradation. Biotransformation experiments were conducted by bacterial strains isolated from soils including, (XC), and (PS), and fungal strains including, (AF), (AN) and (PC).
View Article and Find Full Text PDFAnal Chim Acta
January 2025
Environmental and Bio-Analytical Laboratories, Department of Chemistry, Sharif University of Technology, P.O. Box 11365-9516, Tehran, Iran. Electronic address:
Background: Periodic mesoporous organosilicas (PMOs) are a new class of organic-inorganic hybrid materials with high surface area, narrow pore size distribution, high functional group loading, and tunable functional groups. In contrast to other porous organosilicate materials, PMOs show a uniform distribution of organic groups inside their framework walls. They are synthesized by condensing bis-silylated organic precursors around a surfactant template.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!