Background: In recent years, deep learning has gained remarkable attention in medical image analysis due to its capacity to provide results comparable to specialists and, in some cases, surpass them. Despite the emergence of deep learning research on gastric tissues diseases, few intensive reviews are addressing this topic.
Method: We performed a systematic review related to applications of deep learning in gastric tissue disease analysis by digital histology, endoscopy and radiology images.
Conclusions: This review highlighted the high potential and shortcomings in deep learning research studies applied to gastric cancer, ulcer, gastritis and non-malignant diseases. Our results demonstrate the effectiveness of gastric tissue analysis by deep learning applications. Moreover, we also identified gaps of evaluation metrics, and image collection availability, therefore, impacting experimental reproducibility.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7170401 | PMC |
http://dx.doi.org/10.1136/bmjgast-2019-000371 | DOI Listing |
Med Image Comput Comput Assist Interv
October 2024
Department of Biomedical Engineering, Yale University, New Haven, CT, USA.
Recent advancements in Contrastive Language-Image Pre-training (CLIP) [21] have demonstrated notable success in self-supervised representation learning across various tasks. However, the existing CLIP-like approaches often demand extensive GPU resources and prolonged training times due to the considerable size of the model and dataset, making them poor for medical applications, in which large datasets are not always common. Meanwhile, the language model prompts are mainly manually derived from labels tied to images, potentially overlooking the richness of information within training samples.
View Article and Find Full Text PDFCureus
December 2024
Department of Technology and Clinical Trials, Advanced Research, Deerfield Beach, USA.
This paper investigates the potential of artificial intelligence (AI) and machine learning (ML) to enhance the differentiation of cystic lesions in the sellar region, such as pituitary adenomas, Rathke cleft cysts (RCCs) and craniopharyngiomas (CP), through the use of advanced neuroimaging techniques, particularly magnetic resonance imaging (MRI). The goal is to explore how AI-driven models, including convolutional neural networks (CNNs), deep learning, and ensemble methods, can overcome the limitations of traditional diagnostic approaches, providing more accurate and early differentiation of these lesions. The review incorporates findings from critical studies, such as using the Open Access Series of Imaging Studies (OASIS) dataset (Kaggle, San Francisco, USA) for MRI-based brain research, highlighting the significance of statistical rigor and automated segmentation in developing reliable AI models.
View Article and Find Full Text PDFEur J Case Rep Intern Med
December 2024
Radiology Department, Seychelles Hospital, Healthcare Agency, Victoria, Seychelles.
Unlabelled: Upper extremity deep vein thrombosis (UEDVT) is relatively rare, and much less as an initial presentation of systemic lupus erythematosus (SLE). Primary UEDVT should be considered in individuals with unilateral arm swelling where the brachial, axillary, and subclavian veins are frequently involved. SLE is a chronic autoimmune disease that predominantly affects women of childbearing age and of African descent.
View Article and Find Full Text PDFCardiovasc Diagn Ther
December 2024
Department of Pediatric Cardiology, Royal Brompton Hospital, Guy's and St Thomas' NHS Foundation Trust, London, UK.
Background And Objective: Cardiovascular magnetic resonance (CMR) is a routine cross-sectional imaging modality in adults with congenital heart disease. Developing CMR techniques and the knowledge that CMR is well suited to assess long-term complications and to provide prognostic information for single ventricle (SV) patients makes CMR the ideal assessment tool for this patient cohort. Nevertheless, many of the techniques have not yet been incorporated into day-to-day practice.
View Article and Find Full Text PDFNeuroradiol J
January 2025
Canon Stroke and Vascular Research Center, University at Buffalo, Buffalo, NY, USA.
This study evaluates the efficacy of deep learning models in identifying infarct tissue on computed tomography perfusion (CTP) scans from patients with acute ischemic stroke due to large vessel occlusion, specifically addressing the potential influence of varying noise reduction techniques implemented by different vendors. We analyzed CTP scans from 60 patients who underwent mechanical thrombectomy achieving a modified thrombolysis in cerebral infarction (mTICI) score of 2c or 3, ensuring minimal changes in the infarct core between the initial CTP and follow-up MR imaging. Noise reduction techniques, including principal component analysis (PCA), wavelet, non-local means (NLM), and a no denoising approach, were employed to create hemodynamic parameter maps.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!