Acute myeloid leukemia (AML) is the most common form of acute leukemias in adults which is clinically and molecularly heterogeneous. Several risk and genetic factors have been widely investigated to characterize AML. However, the concomitant epigenetic factors in controlling the gene expression lead to AML transformation was not fully understood. This study was aimed to identify epigenetically regulated genes in AML cell lines induced by epigenetic modulating agents, Trichostatin A (TSA) and 5-Azacytidine (5-Aza). MV4-11 and Kasumi 1 were treated with TSA and/or 5-Aza at IC concentration. Gene expression profiling by microarray was utilized using SurePrint G3 Human Gene Expression v3. Gene ontology and KEGG pathway annotations were analyzed by DAVID bioinformatics software using EASE enrichment score. mRNA expression of the differentially expressed genes were verified by quantitative real time PCR. Gene expression analysis revealed a significant changes in the expression of 24,822, 15,720, 15,654 genes in MV4-11 and 12,598, 8828, 18,026 genes in Kasumi 1, in response to TSA, 5-Aza and combination treatments, respectively, compared to non-treated (<0.05). 7 genes (, , , , , and ) and 4 genes (, , and ) shown to be predominantly expressed in MV4-11 and Kasumi 1, respectively (EASE<0.1). The analysis also revealed phagosome pathway commonly activated in both cell lines. Our data showed a distinct optimal biological characteristic and pathway in different types of leukemic cell lines. These finding may help in the identification of cell-specific epigenetic biomarker in the pathogenesis of AML.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7167603 | PMC |
Front Plant Sci
January 2025
College of Agronomy, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia, China.
The HAK/KUP/KT (High-affinity K transporters/K uptake permeases/K transporters) is the largest and most dominant potassium transporter family in plants, playing a crucial role in various biological processes. However, our understanding of HAK/KUP/KT gene family in potato ( L.) remains limited and unclear.
View Article and Find Full Text PDFFront Plant Sci
January 2025
College of Agriculture and Biology, Liaocheng University, Liaocheng, China.
The wall-associated kinase (WAK) gene family encodes functional cell wall-related proteins. These genes are widely presented in plants and serve as the receptors of plant cell membranes, which perceive the external environment changes and activate signaling pathways to participate in plant growth, development, defense, and stress response. However, the WAK gene family and the encoded proteins in soybean (Glycine max (L.
View Article and Find Full Text PDFFront Plant Sci
January 2025
National Institute of Plant Biotechnology, Indian Council of Agricultural Research (ICAR), New Delhi, India.
The methylation- demethylation dynamics of RNA plays major roles in different biological functions, including stress responses, in plants. mA methylation in RNA is orchestrated by a coordinated function of methyl transferases (writers) and demethylases (Erasers). Genome-wide analysis of genes involved in methylation and demethylation was performed in pigeon pea.
View Article and Find Full Text PDFFront Oncol
January 2025
Gynecologic Oncology Section, Stephenson Cancer Center, Obstetrics and Gynecology Department, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States.
Background/objectives: Patients with ovarian cancer commonly experience metastases and recurrences, which contribute to high mortality. Our objective was to better understand ovarian cancer metastasis and identify candidate biomarkers and drug targets for predicting and preventing ovarian cancer recurrence.
Methods: Transcripts of 770 cancer-associated genes were compared in cells collected from ascitic fluid versus resected tumors of an ES-2 orthotopic ovarian cancer mouse model.
Int J Genomics
January 2025
Department of General Medicine, Chongqing University Central Hospital, Chongqing Emergency Medical Center, Chongqing Key Laboratory of Emergency Medicine, Chongqing, China.
() is associated with the development of various stomach diseases, one of the major risk factors for stomach adenocarcinoma (STAD). The infection score between tumor and normal groups was compared by single-sample gene set enrichment analysis (ssGSEA). The key modules related to infection were identified by weighted gene coexpression network analysis (WGCNA), and functional enrichment analysis was conducted on these module genes.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!