Lattice complex assembled by noncompetitive anti-EGFR antibodies regulates actin cytoskeletal reorganization.

Cancer Cell Int

1Institute of Frontier Medical Science, Jilin University, No.1163 Xinmin Street, Changchun, 130021 Jilin People's Republic of China.

Published: April 2020

Background: Recent evidence of clinical trials highlights that the combination of two noncompetitive anti-EGFR antibodies can benefit patients with several cancers. Previous studies propose that a lattice complex assembled by antibodies and EGFR down-regulates surface EGFR by rapid internalization of the complex. However, there remains a paucity of evidence and understanding on the existence of a lattice complex on cell surface and its cellular processes of internalization.

Methods: Herein, we used three dimensions structured illumination microscopy to directly observe the actual morphology of the lattice complex formed on Hela cell membrane after noncompetitive anti-EGFR antibody combinations, and we explored the internalized mechanism of noncompetitive antibody combinations by constructing a PIP2 consumption system.

Result: We observed the lattice complex (length > 1 μm) on the surface of living cell after preincubation with Cetuximab and H11, but combination of Cetuximab and single domain antibody 7D12 fails to assemble the lattice, these results demonstrates the importance of symmetrical structure of conventional antibody for lattice formation. Interestingly, the lattice complex assembles along with cytoskeletal fibers, and its internalization recruits a large amount of PIP2 and triggers the rearrangement of F-actin.

Conclusions: The above data suggests that large-size lattice complex affects membrane fluidity and dynamic reorganization of cytoskeletal, which may be responsible for its rapid internalization. These new insight will aid in current rational combination design of anti-EGFR antibodies.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7171787PMC
http://dx.doi.org/10.1186/s12935-020-01204-zDOI Listing

Publication Analysis

Top Keywords

lattice complex
28
noncompetitive anti-egfr
12
anti-egfr antibodies
12
lattice
9
complex assembled
8
rapid internalization
8
antibody combinations
8
complex
7
noncompetitive
4
assembled noncompetitive
4

Similar Publications

Nodal loop semimetals are topological materials with drumhead surface states characterized by reduced kinetic energy. If the Fermi energy of such a system is near these nondispersive states interaction among charge carriers substantially impacts their electronic structure. The emergence of magnetism in these surface states is one of the possible consequences.

View Article and Find Full Text PDF

Identifying and tuning coordinated water molecules for efficient electrocatalytic water oxidation.

Nat Commun

December 2024

Key Laboratory of Special Functional and Smart Polymer Materials of Ministry of Industry and Information Technology, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an, Shaanxi, China.

Coordination complexes are promising candidates for powerful electrocatalytic oxygen evolution reaction but challenges remain in favoring the kinetics behaviors through local coordination regulation. Herein, by refining the synergy of carboxylate anions and multiconjugated benzimidazole ligands, we tailor a series of well-defined and stable coordination complexes with three-dimensional supramolecular/coordinated structures. The coordinated water as potential open coordination sites can directly become intermediates, while the metal center easily achieves re-coordination with water molecules in the pores to resist lattice oxygen dissolution.

View Article and Find Full Text PDF

Transmission-type plasmonic phase metasurfaces utilizing the Pancharatnam-Berry (PB) phase require constant transmittivity with complete phase variation from 0 to 2π. Usually, this is achieved by rotating metallic nanoparticles in an otherwise uniform lattice arrangement. However, this rotation and the chosen lattice structure cause a significant change in the transmittivity, resulting in a lower intensity of light with certain phases and a higher intensity for other phases.

View Article and Find Full Text PDF

Investigation of factors affecting the sound absorption behaviour of 3D printed hexagonal prism lattice polyamide structures.

Sci Rep

December 2024

Faculty of Mechanical Engineering, Department of Machining, Assembly and Engineering Metrology, VSB-Technical University of Ostrava, Ostrava-Poruba, 708 00, Czech Republic.

The aim of this work is to investigate the sound absorption properties of open-porous polyamide 12 (PA12) structures produced using Selective Laser Sintering (SLS) technology. The examined 3D-printed samples, fabricated with hexagonal prism lattice structures, featured varying thicknesses, cell sizes, and orientations. Additionally, some samples were produced with an outer shell to evaluate its impact on sound absorption.

View Article and Find Full Text PDF

Proton exchange membrane fuel cells (PEMFCs) are being pursued for applications in the maritime industry to meet stringent ship emissions regulations. Further basic research is needed to improve the performance of PEMFCs in marine environments. Assembly stress compresses the gas diffusion layer (GDL) beneath the ribs, significantly altering its pore structure and internal transport properties.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!