We identified the most sensitive genotype-specific parameters (GSPs) and their contribution to the uncertainty of the MANIHOT simulation model. We applied a global sensitivity and uncertainty analysis (GSUA) of the GSPs to the simulation outputs for the cassava development, growth, and yield in contrasting environments. We compared enhanced Sampling for Uniformity, a qualitative screening method new to crop simulation modeling, and Sobol, a quantitative, variance-based method. About 80% of the GSPs contributed to most of the variation in maximum leaf area index (LAI), yield, and aboveground biomass at harvest. Relative importance of the GSPs varied between warm and cool temperatures but did not differ between rainfed and no water limitation conditions. Interactions between GSPs explained 20% of the variance in simulated outputs. Overall, the most important GSPs were individual node weight, radiation use efficiency, and maximum individual leaf area. Base temperature for leaf development was more important for cool compared to warm temperatures. Parameter uncertainty had a substantial impact on model predictions in MANIHOT simulations, with the uncertainty 2-5 times larger for warm compared to cool temperatures. Identification of important GSPs provides an objective way to determine the processes of a simulation model that are critical versus those that have little relevance.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7161911 | PMC |
http://dx.doi.org/10.1016/j.eja.2020.126031 | DOI Listing |
Bioinformatics
January 2025
Department of Biostatistics, City University of Hong Kong, 83 Tat Chee Avenue, Hong Kong, China.
Motivation: Fine-mapping aims to prioritize causal variants underlying complex traits by accounting for the linkage disequilibrium of GWAS risk locus. The expanding resources of functional annotations serve as auxiliary evidence to improve the power of fine-mapping. However, existing fine-mapping methods tend to generate many false positive results when integrating a large number of annotations.
View Article and Find Full Text PDFPak J Pharm Sci
January 2025
Department of Pharmacy, the First Affiliated Hospital of Soochow University, Suzhou City, Jiangsu Province, China.
Berberine (BBR), an isoquinoline alkaloid abundant in Coptis chinensis, exhibits anti-tumor and hypoglycemic properties. The regulation of tumor cell homeostasis and metabolism is greatly influenced by Hypoxia-inducible factor-1α (HIF-1α). This research aims to elucidate whether BBR inhibits the progression of hepatocellular carcinoma (HCC) by modulating HIF-1α expression.
View Article and Find Full Text PDFBiophys J
January 2025
Department of Biological Sciences & Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute Troy, NY 12180, USA; Department of Biomedical Engineering, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute Troy, NY 12180, USA. Electronic address:
Stretch activation (SA), a delayed increase in force production following rapid muscle lengthening, is critical to the function of vertebrate cardiac muscle and insect asynchronous indirect flight muscle (IFM). SA enables or increases power generation in muscle types used in a cyclical manner. Recently, myosin isoform expression has been implicated as a mechanism for varying the amplitude of SA in some muscle types.
View Article and Find Full Text PDFEur J Trauma Emerg Surg
January 2025
AO Research Institute Davos, Davos, Switzerland.
Background: Digitally Enhanced Hands-on Surgical Training (DEHST) platform was introduced to overcome the lack of training capabilities for the challenging task of freehand distal interlocking of intramedullary nails. It demonstrates high perceived realism for surgeons, and novices perform significantly better after DEHST training. However, characterization of how performance improves remained unexplored.
View Article and Find Full Text PDFSci Rep
January 2025
School of civil engineering, Henan University of Technology, Zhengzhou, 450001, Henan, China.
This article uses the engineering background of the Zhengzhou Metro Line 5 with a cement-soil group pile composite foundation. It simplifies the composite foundation using the area-weighted composite modulus method and establishes a finite element model of a double-line EPBM passing beneath the cement-soil group pile composite foundation building. The calculation results were compared and validated against monitoring data.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!