During 2009-2012, several outbreaks of avian influenza virus H9N2 were reported in Tunisian poultry. The circulating strains carried in their hemagglutinins the human-like marker 226L, which is known to be important for avian-to-human viral transmission. To investigate the origins and zoonotic potential of the Tunisian H9N2 viruses, five new isolates were identified during 2012-2016 and their whole genomes were sequenced. Bayesian-based phylogeny showed that the HA, NA, M and NP segments belong to the G1-like lineage. The PB1, PB2, PA and NS segments appeared to have undergone multiple intersubtype reassortments and to be only distantly related to all of the Eurasian lineages (G1-like, Y280-like and Korean-like). The spatiotemporal dynamic of virus spread revealed that the H9N2 virus was transferred to Tunisia from the UAE through Asian and European pathways. As indicated by Bayesian analysis of host traits, ducks and terrestrial birds played an important role in virus transmission to Tunisia. The subtype phylodynamics showed that the history of the PB1 and PB2 segments was marked by intersubtype reassortments with H4N6, H10N4 and H2N2 subtypes. Most of these transitions between locations, hosts and subtypes were statistically supported (BF > 3) and not influenced by sampling bias. Evidence of genetic evolution was observed in the predicted amino acid sequences of the viral proteins of recent Tunisian H9N2 viruses, which were characterized by the acquisition of new mutations involved in virus adaptation to avian and mammalian hosts and amantadine resistance. This study is the first comprehensive analysis of the evolutionary history of Tunisian H9N2 viruses and highlights the zoonotic risk associated with their circulation in poultry, indicating the need for continuous surveillance of their molecular evolution.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s00705-020-04624-4 | DOI Listing |
Virus Res
June 2024
Laboratory of Epidemiology and Veterinary Microbiology, LR19IPT03, Institut Pasteur de Tunis, University of Tunis El Manar, 13, Place Pasteur-BP74, Tunis, Belvédère 1002, Tunisia.
Avian influenza virus subtype H9N2 is endemic in commercial poultry in Tunisia. This subtype affects poultry and wild birds in Tunisia and poses a potential zoonotic risk. Tunisian H9N2 strains carry, in their hemagglutinins, the human-like marker 226 L that is most influential in avian-to-human viral transmission.
View Article and Find Full Text PDFVet Res
October 2023
IHAP, Université de Toulouse, INRAE, ENVT, Toulouse, France.
Respiratory diseases are a health and economic concern for poultry production worldwide. Given global economic exchanges and migratory bird flyways, respiratory viruses are likely to emerge continuously in new territories. The primary aim of this study was to investigate the major pathogens involved in respiratory disease in Tunisian broiler poultry and their epidemiology.
View Article and Find Full Text PDFArch Virol
July 2020
Laboratory of Epidemiology and Veterinary Microbiology, LR19IPT03, Institut Pasteur de Tunis, University Tunis El Manar, 13, Place Pasteur, BP74, 1002, Tunis, Belvedere, Tunisia.
During 2009-2012, several outbreaks of avian influenza virus H9N2 were reported in Tunisian poultry. The circulating strains carried in their hemagglutinins the human-like marker 226L, which is known to be important for avian-to-human viral transmission. To investigate the origins and zoonotic potential of the Tunisian H9N2 viruses, five new isolates were identified during 2012-2016 and their whole genomes were sequenced.
View Article and Find Full Text PDFComp Immunol Microbiol Infect Dis
August 2019
University Tunis El Manar, Institut Pasteur de Tunis, Laboratory of Epidemiology and Veterinary Microbiology,13 Place Pasteur, 1002 Tunis-Belvedere, Tunisia. Electronic address:
The interaction between a low pathogenic avian influenza virus (A/CK/TUN/145/2012), a H9N2 Tunisian isolate, and a vaccine strain (H120) of avian infectious bronchitis, administered simultaneously or sequentially three days apart to chicks during 20 days, was evaluated using ELISA antibody levels, quantitative reverse transcription-polymerase chain reaction (qRT-PCR) analyses and histopathology examination. First, the in vivo replication interference of avian influenza virus (AIV) and infectious bronchitis virus (IBV) was evaluated using qRT-PCR to detect accurately either AIV or IBV genomes or viral copy numbers during dual infections. Second, we have determined the amount of specific antibodies in sera of chick's infected with AIV alone, IBV alone, mixed AIV + IBV, IBV then AIV or AIV IBV 3 days later using an ELISA test.
View Article and Find Full Text PDFPLoS One
July 2013
University Tunis El Manar, Veterinary Microbiology Laboratory, Institut Pasteur de Tunis, Tunis- Belvédère, Tunisia.
Objective: Estimate the seroprevalence of influenza A virus in various commercial poultry farms and evaluate specific risk factors as well as analyze their genetic nature using molecular assays.
Materials And Methods: This report summarizes the findings of a national survey realized from October 2010 to May 2011 on 800 flocks in 20 governorates. Serum samples were screened for the presence of specific influenza virus antibodies using cELISA test.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!