Purpose: To assess the effect of upright, seated, and supine postures on lumbar muscle morphometry at multiple spinal levels and for multiple muscles.

Methods: Six asymptomatic volunteers were imaged (0.5 T upright open MRI) in 7 postures (standing, standing holding 8 kg, standing 45° flexion, seated 45° flexion, seated upright, seated 45° extension, and supine), with scans at L3/L4, L4/L5, and L5/S1. Muscle cross-sectional area (CSA) and muscle position with respect to the vertebral body centroid (radius and angle) were measured for the multifidus/erector spinae combined and psoas major muscles.

Results: Posture significantly affected the multifidus/erector spinae CSA with decreasing CSA from straight postures (standing and supine) to seated and flexed postures (up to 19%). Psoas major CSA significantly varied with vertebral level with opposite trends due to posture at L3/L4 (increasing CSA, up to 36%) and L5/S1 (decreasing CSA, up to 40%) with sitting/flexion. For both muscle groups, radius and angle followed similar trends with decreasing radius (up to 5%) and increasing angle (up to 12%) with seated/flexed postures. CSA and lumbar lordosis had some correlation (multifidus/erector spinae L4/L5 and L5/S1, r = 0.37-0.45; PS L3/L4 left, r =  - 0.51). There was generally good repeatability (average ICC(3, 1): posture = 0.81, intra = 0.89, inter = 0.82).

Conclusion: Changes in multifidus/erector spinae muscle CSA likely represent muscles stretching between upright and seated/flexed postures. For the psoas major, the differential level effect suggests that changing three-dimensional muscle morphometry with flexion is not uniform along the muscle length. The muscle and spinal level-dependent effects of posture and spinal curvature correlation, including muscle CSA and position, highlight considering measured muscle morphometry from different postures in spine models.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00586-020-06409-4DOI Listing

Publication Analysis

Top Keywords

muscle morphometry
16
multifidus/erector spinae
16
psoas major
12
muscle
11
csa
9
lumbar muscle
8
upright seated
8
postures standing
8
45° flexion
8
flexion seated
8

Similar Publications

Structural and Functional Characterization of the Aorta in Hypertrophic Obstructive Cardiomyopathy.

Circ Heart Fail

January 2025

Aswan Heart Center, Magdi Yacoub Heart Foundation, Egypt (A.M.I., M.R., A. Elsawy, M.H., S.H., W.E., A. Elaithy, A. Elguindy, A. Afifi, Y.A., M.Y.).

Background: Changes in the phenotype and genotype in hypertrophic cardiomyopathy (HCM) are thought to involve the myocardium as well as extracardiac tissues. Here, we describe the structural and functional changes in the ascending aorta of obstructive patients with HCM.

Methods: Changes in the aortic wall were studied in a cohort of 101 consecutive patients with HCM undergoing myectomy and 9 normal controls.

View Article and Find Full Text PDF

Aim: Latissimus dorsi is a multi-purpose muscle that can be used to repair defects in many areas of the body. The current study aims to investigate latissimus dorsi morphometry, innervation, vascularization, and variational situations in fetuses.

Material And Methods: Forty-nine fetuses, aged between 15 and 40 weeks of gestation, were examined for the morphological development of the latissimus dorsi.

View Article and Find Full Text PDF

Effects of photobiomodulation therapy (660-nm laser) on median nerve function in Wistar rats.

Photochem Photobiol

January 2025

Departamento de Fisioterapia, Universidade Federal dos Vales Do Jequitinhonha e, Diamantina, Minas Gerais, Brazil.

This study investigates the effects of photobiomodulation (PBM) with a 660-nm laser on nerve regeneration and muscle morphometry following median nerve axonotmesis in rats. Sixteen Wistar rats were divided into a control group and laser-treated group, with the latter receiving 10 applications of PBM (660 nm; 20 mW; 10 J/cm; 0.4 J; and 20 s) over 2 weeks.

View Article and Find Full Text PDF

Objective: Lumbo-pelvic-hip complex muscle training is considered a crucial component of exercise rehabilitation for postpartum women with pelvic girdle pain (PGP). However, there is a paucity of research evidence regarding the morphological changes and contraction function of these muscles in postpartum women with PGP. Understanding the alterations in lumbo-pelvic-hip complex muscles function associated with PGP, is crucial for tailoring effective rehabilitation strategies and promoting optimal postpartum recovery.

View Article and Find Full Text PDF

Introduction: Excess weight during pregnancy is a condition that can affect both mother and fetus, through the maternal-fetal interface, which is constituted by the placenta and umbilical cord. The umbilical vein is responsible for transporting oxygen and nutrients to the fetus, and its proper functioning depends on the integrity of its structure. The remodeling of the umbilical vein represents one of the causes of inadequate transport of nutrients to the fetus, being potentially harmful.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!