Electrical stimulation (ES) has provided enhanced chondrogenesis of mesenchymal stem cells (MSCs) cultured in micro-mass without the addition of exogenous growth factors. In this study, we demonstrate for the first time that ES of MSCs encapsulated in an injectable hyaluronic acid (HA) - gelatin (GEL) mixture enhances the chondrogenic potential of the hydrogel. Samples were stimulated for 21 days with 10 mV/cm at 60 kHz, applied for 30 min every 6 h a day. Mechanical properties of hydrogels were higher if the precursors were dissolved in Calcium-Free Krebs Ringer Buffer (G' = 1141 ± 23 Pa) compared to those diluted in culture media (G' = 213 ± 19 Pa). Cells within stimulated hydrogels were rounder (55%) than non-stimulated cultures (32%) (p = 0.005). Chondrogenic markers such as SOX-9 and aggrecan were higher in stimulated hydrogels compared to controls. The ES demonstrated that normalized content of glycosaminoglycans and collagen to DNA was slightly higher in stimulated samples. Additionally, collagen type II normalized to total collagen was 2.43 times higher in stimulated hydrogels. These findings make ES a promising tool for enhancing articular cartilage tissue engineering outcomes by combining hydrogels and MSCs.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.bioelechem.2020.107536DOI Listing

Publication Analysis

Top Keywords

stimulated hydrogels
12
higher stimulated
12
electrical stimulation
8
mesenchymal stem
8
stem cells
8
hyaluronic acid
8
acid gelatin
8
hydrogels
6
stimulated
5
stimulation chondrogenic
4

Similar Publications

Immunogenic cell death (ICD) of tumor cells, which is characterized by releasing immunostimulatory "find me" and "eat me" signals, expressing proinflammatory cytokines and providing personalized and broad-spectrum tumor antigens draws increasing attention in developing a tumor vaccine. In this study, we aimed to investigate whether the influenza virus (IAV) is efficient enough to induce ICD in tumor cells and an extra modification of IAV components such as hemeagglutinin (HA) will be helpful for the ICD-induced cells to elicit robust antitumor effects; in addition, to evaluate whether the membrane-engineering polylactic coglycolic acid nanoparticles (PLGA NPs) simulating ICD immune stimulation mechanisms hold the potential to be a promising vaccine candidate, a mouse melanoma cell line (B16-F10 cell) was infected with IAV rescued by the reverse genetic system, and the prepared cells and membrane-modified PLGA NPs were used separately to immunize the melanoma-bearing mice. IAV-infected tumor cells exhibit dying status, releasing high mobility group box-1 (HMGB1) and adenosine triphosphate (ATP), and exposing calreticulin (CRT), IAV hemeagglutinin (HA), and tumor antigens like tyrosinase-related protein 2 (TRP2).

View Article and Find Full Text PDF

Thermosensitive-based synergistic antibacterial effects of novel LL37@ZPF-2 loaded poloxamer hydrogel for infected skin wound healing.

Int J Pharm

January 2025

Key Laboratory of Biopharmaceutical Preparation and Delivery, State Key Laboratory of Biochemical Engineering, Chinese Academy of Sciences, Beijing 100190 China; Key Laboratory of Industrial Microbiology, Ministry of Education, College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457 China. Electronic address:

Trauma healing is the process of healing after the body has been subjected to an external force and the skin and other tissues have become dissected or defective, showing the synergistic effect of various processes. Therefore, the investigation of innovative wound dressings has significant research and clinical implications. In this study, we constructed a zinc based metal-organic framework (MOF) and loaded with antimicrobial peptide LL37 to prepare LL37@ZPF-2 (ZPF = zeolite pyrimidine backbone), which was subsequently integrated with Poloxamer 407 to fabricate LL37@ZPF-2 thermosensitive hydrogel.

View Article and Find Full Text PDF

Hydrogels possessing appropriate adhesion and antibacterial properties have emerged as promising dressings for expediting wound healing, while also providing the convenience of visualizing the wound site to accurately monitor the healing process. In this study, we incorporated oxidized and degraded polydopamine nanoparticles into quaternized chitosan/oxidized dextran hydrogel QOP series, resulting in enhanced transmittance exceeding 95 % and adhesion strengths reaching up to 19.4 kPa.

View Article and Find Full Text PDF

Protein self-assembly allows for the formation of diverse supramolecular materials from relatively simple building blocks. In this study, a single-component self-assembling hydrogel is developed using the recombinant protein CsgA, and its successful application for spinal cord injury repair is demonstrated. Gelation is achieved by the physical entanglement of CsgA nanofibrils, resulting in a self-supporting hydrogel at low concentrations (≥5 mg mL).

View Article and Find Full Text PDF

Physiological wound healing process can restore the functional and structural integrity of skin, but is often delayed due to external disturbance. The development of methods for promoting the repair process of skin wounds represents a highly desired and challenging goal. Here, a flexible, self-powered, and multifunctional triboelectric nanogenerator (TENG) wound patch (e-patch) is presented for accelerating wound healing through the synergy of electrostimulation and photothermal effect.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!