Mortality of oral cancer is often due to late diagnosis. Effective non-invasive diagnostic techniques may increase the survival rate based on an earlier diagnosis.. We report on the application of the polarization gating technique for isolating weakly scattered and highly scattered components of fluorescence emission from the superficial and deeper layers of tissue due to intrinsic fluorophores NADH and FAD. The fluorescence polarization spectra were collected from 21 normal and 67 oral squamous cell carcinoma biopsy tissues. The tissues were excited at 350 nm and the fluorescence emission had two peaks corresponding to NADH, and FAD respectively. The spectra were analyzed using the polarization gating technique along with the spectral deconvolution method to derive the optical redox ratio from different layers of tissue. The fractional change in redox ratio between superficial and deeper layers of tissue exhibits excellent statistical significance (p<10) which may be due to a shift in the metabolic pathway from oxidative phosphorylation to glycolysis in the cancer cell. Further, variation in collagen intensity in deeper layers of tissue is observed which may be attributed to the breakdown of collagen fibers in the stroma. Linear discriminant analysis showed that oral cancer tissue is discriminated with a better accuracy using polarization gating technique than that of conventional fluorescence spectroscopy.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.pdpdt.2020.101757DOI Listing

Publication Analysis

Top Keywords

polarization gating
12
gating technique
12
redox ratio
12
layers tissue
12
oral cancer
8
fluorescence emission
8
superficial deeper
8
deeper layers
8
nadh fad
8
polarization
4

Similar Publications

The human voltage-gated proton channel (H1) provides an efficient proton extrusion pathway from the cytoplasm contributing to the intracellular pH regulation and the oxidative burst. Although its pharmacological inhibition was previously shown to induce cell death in various cell types, no such effects have been examined in polarized macrophages albeit H1 was suggested to play important roles in these cells. This study highlights that 5-chloro-2-guanidinobenzimidazole (ClGBI), the most widely applied H1 inhibitor, reduces the viability of human THP-1-derived polarized macrophages at biologically relevant doses with M1 macrophages being the most, and M2 cells the least sensitive to this compound.

View Article and Find Full Text PDF

Incipient ferroelectricity bridges traditional dielectrics and true ferroelectrics, enabling advanced electronic and memory devices. Firstly, we report incipient ferroelectricity in freestanding SrTiO nanomembranes integrated with monolayer MoS to create multifunctional devices, demonstrating stable ferroelectric order at low temperatures for cryogenic memory devices. Our observation includes ultra-fast polarization switching (~10 ns), low switching voltage (<6 V), over 10 years of nonvolatile retention, 100,000 endurance cycles, and 32 conductance states (5-bit memory) in SrTiO-gated MoS transistors at 15 K and up to 100 K.

View Article and Find Full Text PDF

Unraveling Serial Degradation Pathways of Supported Catalysts through Reliable Electrochemical Liquid-Cell TEM Analysis.

J Am Chem Soc

December 2024

Department of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, Seoul 08826, Republic of Korea.

Electrochemical liquid-cell transmission electron microscopy (e-LCTEM) offers great potential for investigating the structural dynamics of nanomaterials during electrochemical reactions. However, challenges arise from the difficulty in achieving the optimal electrolyte thickness, leading to inconsistent electrochemical responses and limited spatial resolution. In this study, we present advanced e-LCTEM techniques tailored for tracking Pt/C degradation under electrochemical polarization at short intervals with high spatial resolution.

View Article and Find Full Text PDF

Most molecular catalysts have been developed employing polar functional groups as catalytic sites. However, the use of non-polar functional groups for catalysis has received less attention due to their modest molecular interactions while the bioorthogonal reactivity of non-polar alkenes as substrates is frequently used in click chemistry. In this study, we conducted mechanistic studies on the catalysis of trans-cyclooctene (TCO) derivatives with the strained olefin as the catalytic site using kinetic and computational analyses to aid the design of more active olefin catalysts.

View Article and Find Full Text PDF

Optical logic gates based on nonlinear optical property of material with ultrafast response speed and excellent computational processing power can break the performance bottleneck of electronic transistors. As one of the layered 2D materials, TaNiS exhibits high anisotropic mobility, exotic electrical response, and intriguing optical properties. Due to the low-symmetrical crystal structures, it possesses in-plane anisotropic physical properties.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!