Intestinal ischemia-reperfusion (I/R) is a life-threatening condition associated with high morbidity and mortality. Dexmedetomidine (DEX), an agonist of α2-adrenoceptor with sedation and analgesia effect, has recently been identified with protective function against I/R injury in multiple organs. However, the mechanism underlying the beneficial effect of DEX on intestine after I/R injury remained poorly understood. In the present study, using in both in vitro and in vivo models, we found that intestinal I/R injury was associated with the activation of p38 MAPK cascade, while DEX was capable of deactivating p38 MAPK and thus protect intestinal cells from apoptosis by inhibiting p38 MAPK-mediated mitochondrial depolarization and cytochrome c (Cyto C) release. Moreover, through inhibiting p38 MAPK activity, the downstream production of pro-inflammatory cytokines-regulated by NF-κB was also suppressed by DEX treatment, leading to the resolution of I/R-induced inflammation in intestine. In general, our study provided evidence that DEX protected intestine from I/R injury by inhibiting p38 MAPK-mediated mitochondrial apoptosis and inflammatory response.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.yexmp.2020.104444DOI Listing

Publication Analysis

Top Keywords

inhibiting p38
16
p38 mapk
16
i/r injury
16
intestinal ischemia-reperfusion
8
injury inhibiting
8
intestine i/r
8
p38 mapk-mediated
8
mapk-mediated mitochondrial
8
p38
6
injury
5

Similar Publications

Abdominal aortic aneurysm is a potentially fatal vascular inflammatory disease characterized by infiltration of various inflammatory cells.The GABA-A receptor is expressed in many inflammatory cells such as macrophages and T cells and has anti-inflammatory and antioxidant effects. Therefore, the GABA-A receptor may become a potential therapeutic target for abdominal aortic aneurysms.

View Article and Find Full Text PDF

Hepatocellular carcinoma (HCC) constitutes 90% of liver cancer cases and ranks as the third leading cause of cancer-related mortality, necessitating urgent development of alternative therapies. Lactoferrin (LF), a natural iron-binding glycoprotein with reported anticancer effects, is investigated for its potential in liver cancer treatment, an area with limited existing studies. This study focuses on evaluating LF's anti-liver cancer effects on HCC cells and assessing the preventive efficacy of oral LF administration in a murine model.

View Article and Find Full Text PDF

Inducing phospholipase A2 and cyclooxygenase-2 expression and prostaglandins' production of human dental pulp cells by activation of NOD receptor and its downstream signaling.

Int J Biol Macromol

December 2024

School of Dentistry, National Taiwan University Medical College, Taipei, Taiwan; Department of Dentistry, National Taiwan University Hospital, Taipei, Taiwan; School of Dentistry, College of Dental Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan; Department of Dentistry, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan. Electronic address:

Dental caries with invasion and infection by microorganisms may induce pulpitis and intolerable pain. L-Ala-γ-D-Glu-mDAP (TriDAP) is a DAP-comprising muramyl tripeptide and a peptidoglycan degradation product found in gram-negative pulpal pathogens. TriDAP activates nucleotide-binding oligomerization domain1/2 (NOD1/NOD2) and induces tissue inflammatory responses.

View Article and Find Full Text PDF

Anti-Inflammatory Effects of Extract in -Stimulated RAW 264.7 Cells.

Curr Issues Mol Biol

November 2024

Institute of Biomaterial • Implant, Department of Oral Anatomy, School of Dentistry, Wonkwang University, Iksan 54538, Republic of Korea.

has been used both as a food and in traditional medicine. However, its anti-inflammatory effects in periodontal diseases have not been studied. We examined the anti-inflammatory properties of extract in RAW 264.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!