Transcriptional and epigenetic control of regulated cell death in yeast.

Int Rev Cell Mol Biol

Institute of Molecular Biosciences, NAWI Graz, University of Graz, Graz, Austria; BioTechMed Graz, Graz, Austria. Electronic address:

Published: December 2020

Unicellular organisms like yeast can undergo controlled demise in a manner that is partly reminiscent of mammalian cell death. This is true at the levels of both mechanistic and functional conservation. Yeast offers the combination of unparalleled genetic amenability and a comparatively simple biology to understand both the regulation and evolution of cell death. In this minireview, we address the capacity of the nucleus as a regulatory hub during yeast regulated cell death (RCD), which is becoming an increasingly central question in yeast RCD research. In particular, we explore and critically discuss the available data on stressors and signals that specifically impinge on the nucleus. Moreover, we also analyze the current knowledge on nuclear factors as well as on transcriptional control and epigenetic events that orchestrate yeast RCD. Altogether we conclude that the functional significance of the nucleus for yeast RCD in undisputable, but that further exploration beyond correlative work is necessary to disentangle the role of nuclear events in the regulatory network.

Download full-text PDF

Source
http://dx.doi.org/10.1016/bs.ircmb.2019.12.003DOI Listing

Publication Analysis

Top Keywords

cell death
16
yeast rcd
12
regulated cell
8
yeast
7
transcriptional epigenetic
4
epigenetic control
4
control regulated
4
cell
4
death
4
death yeast
4

Similar Publications

Diagnosis of lung cancer using salivary miRNAs expression and clinical characteristics.

BMC Pulm Med

January 2025

Universal Scientific Education and Research Network (USERN), Tehran, Iran.

Objective: Lung cancer (LC), the primary cause for cancer-related death globally is a diverse illness with various characteristics. Saliva is a readily available biofluid and a rich source of miRNA. It can be collected non-invasively as well as transported and stored easily.

View Article and Find Full Text PDF

Omega-3 fatty acids: molecular weapons against chemoresistance in breast cancer.

Cell Mol Biol Lett

January 2025

Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Arcavacata Di Rende, 87036, Cosenza, Italy.

Breast cancer is the most commonly diagnosed type of cancer and the leading cause of cancer-related death in women worldwide. Highly targeted therapies have been developed for different subtypes of breast cancer, including hormone receptor (HR)-positive and human epidermal growth factor receptor 2 (HER2)-positive breast cancer. However, triple-negative breast cancer (TNBC) and metastatic breast cancer disease are primarily treated with chemotherapy, which improves disease-free and overall survival, but does not offer a curative solution for these aggressive forms of breast cancer.

View Article and Find Full Text PDF

Background: Oral squamous cell carcinoma (OSCC) ranks as the sixth most common malignancy globally. Cisplatin is the standard chemotherapy for OSCC, but resistance often reduces its efficacy, necessitating new treatments with fewer side effects. Rumex dentatus L.

View Article and Find Full Text PDF

Tongue squamous cell carcinoma (TSCC) is a common malignant oral cancer characterized by substantial invasion, a high rate of lymph node and distant metastasis, and a high recurrence rate. This study aims to provide new ideas for the diagnosis and treatment of TSCC patients by exploring the related mechanisms that affect the migration and invasion of TSCC and inhibit the migration and spread of cancer cells. The results indicated the rate of high expression of IL-17 in cancer tissues was greater than that in tongue tissues, and the expression of IL-17 was related to the TNM stage.

View Article and Find Full Text PDF

Targeting aldehyde dehydrogenase ALDH3A1 increases ferroptosis vulnerability in squamous cancer.

Oncogene

January 2025

Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, 230031, China.

Ferroptosis is a unique modality of regulated cell death induced by excessive lipid peroxidation, playing a crucial role in tumor suppression and providing potential therapeutic strategy for cancer treatment. Here, we find that aldehyde dehydrogenase-ALDH3A1 tightly links to ferroptosis in squamous cell carcinomas (SCCs). Functional assays demonstrate the enzymatic activity-dependent regulation of ALDH3A1 in protecting SCC cells against ferroptosis through catalyzing aldehydes and mitigating lipid peroxidation.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!