CTCF and CTCFL in cancer.

Curr Opin Genet Dev

Dept. of Pathology, New York University Langone Health, New York, NY 10016, USA; Laura and Isaac Perlmutter Cancer Center, NYU School of Medicine, New York, NY 10016, USA. Electronic address:

Published: April 2020

CTCF plays a key role in organizing chromatin into TAD structures but it can also function as a transcription factor. CTCFL (CTCF-like), the paralog of CTCF, is normally transiently expressed in pre-meiotic male germ cells together with ubiquitously expressed CTCF. It plays a unique role in spermatogenesis by regulating expression of testis-specific genes. Genetic alterations in CTCF and its paralog CTCFL have both been found in numerous cancers, but it remains unknown to what extent CTCFL deregulates transcription on its own or by opposing CTCF. Here, we discuss some of the potential mechanisms by which these two proteins could alter gene regulation and contribute to oncogenic transcriptional programs.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7893514PMC
http://dx.doi.org/10.1016/j.gde.2020.02.021DOI Listing

Publication Analysis

Top Keywords

ctcf plays
8
ctcf
6
ctcf ctcfl
4
ctcfl cancer
4
cancer ctcf
4
plays key
4
key role
4
role organizing
4
organizing chromatin
4
chromatin tad
4

Similar Publications

Article Synopsis
  • Cis-regulatory elements play a key role in gene expression by connecting enhancers and promoters through 3D chromosomal structures, and changes in these systems may be linked to genetic diseases.
  • Klotho, an anti-aging protein important for kidney health, has unclear regulatory mechanisms in chronic kidney disease (CKD).
  • In this study, researchers used chromosome conformation capture to explore the chromatin structure near the Klotho gene in CKD tissues, finding that regulatory activities decreased and specific DNA sites lost their function compared to healthy tissues.
View Article and Find Full Text PDF

A negatively charged region within carboxy-terminal domain maintains proper CTCF DNA binding.

iScience

December 2024

Center for Comparative Biomedicine, Ministry of Education Key Laboratory of Systems Biomedicine, State Key Laboratory of Medical Genomics, Institute of Systems Biomedicine, Shanghai Jiao Tong University, Shanghai 200240, China.

As an essential regulator of higher-order chromatin structures, CCCTC-binding factor (CTCF) is a highly conserved protein with a central DNA-binding domain of 11 tandem zinc fingers (ZFs), which are flanked by amino (N-) and carboxy (C-) terminal domains of intrinsically disordered regions. Here we report that CRISPR deletion of the entire C-terminal domain of alternating charge blocks decreases CTCF DNA binding but deletion of the C-terminal fragment of 116 amino acids results in increased CTCF DNA binding and aberrant gene regulation. Through a series of genetic targeting experiments, in conjunction with electrophoretic mobility shift assay (EMSA), circularized chromosome conformation capture (4C), qPCR, chromatin immunoprecipitation with sequencing (ChIP-seq), and assay for transposase-accessible chromatin with sequencing (ATAC-seq), we uncovered a negatively charged region (NCR) responsible for weakening CTCF DNA binding and chromatin accessibility.

View Article and Find Full Text PDF

CTCF plays a vital role in shaping chromatin structure and regulating gene expression. Clinical studies have associated CTCF mutations with congenital developmental abnormalities, including congenital cardiomyopathy. In this study, we investigated the impact of the homozygous CTCF-R567W (Ctcf) mutation on cardiac tissue morphogenesis during mouse embryonic development.

View Article and Find Full Text PDF
Article Synopsis
  • - CTCF plays an essential role in shaping chromatin structure, which is important for gene regulation, but the specific ways this varies between different cell types are not completely understood.
  • - Research shows that differences in how CTCF binds to DNA, influenced by species-specific features and surrounding transcription factor motifs, affect chromatin accessibility and nucleosome arrangement in both mice and humans.
  • - The study highlights that individual transcription factors can either stabilize or destabilize CTCF binding in specific cell types, impacting the overall organization of chromatin over both short and long distances.
View Article and Find Full Text PDF

An EED/PRC2-H19 Loop Regulates Cerebellar Development.

Adv Sci (Weinh)

January 2025

Key Laboratory of Organ Regeneration and Reconstruction, State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China.

EED (embryonic ectoderm development) is a core subunit of the polycomb repressive complex 2 (PRC2), which senses the trimethylation of histone H3 lysine 27 (H3K27). However, its biological function in cerebellar development remains unknown. Here, we show that EED deletion from neural stem cells (NSCs) or cerebellar granule cell progenitors (GCPs) leads to reduced GCPs proliferation, cell death, cerebellar hypoplasia, and motor deficits in mice.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!