A high-speed atomic force microscopy with super resolution based on path planning scanning.

Ultramicroscopy

Institute of Robotics and Automatic Information System, Nankai University, Tianjin, 300350, China; Tianjin Key Laboratory of Intelligent Robotics, Tianjin, 300350, China.

Published: June 2020

An atomic force microscopy generally adopts a raster scanning method to obtain the image of the sample morphology. However, the raster method takes too much time on the base part without focusing enough on the object, thereby restricting the scanning speed of an AFM. To solve this problem, this paper proposes a novel path planning based scanning method to achieve high-speed scanning with super resolution for AFMs. Specifically speaking, a fast scanning process is first carried out to generate a low-resolution image with less time, then a convolutional neural network is designed to construct a super-resolution image based on the fast scanning image. Afterwards, an advanced detection algorithm is proposed to achieve the accurate object detection and localization. Furthermore, an improved ant colony optimization algorithm is proposed to realize the path planning for scanning the objects with high quality, whose imaging result is then matched with the previous super-resolution image to construct the entire sample image, thus achieving fast scanning with super resolution. Experimental and application results demonstrate the good performance of the proposed scanning method.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ultramic.2020.112991DOI Listing

Publication Analysis

Top Keywords

super resolution
12
path planning
12
scanning method
12
fast scanning
12
scanning
10
atomic force
8
force microscopy
8
planning scanning
8
scanning super
8
super-resolution image
8

Similar Publications

Introduction: Antisense oligonucleotides (ASOs) have shown promise in reducing amyloid precursor protein (APP) levels in neurons, but their effects in astrocytes, key contributors to neurodegenerative diseases, remain unclear. This study evaluates the efficacy of APP ASOs in astrocytes derived from an individual with Down syndrome (DS), a population at high risk for Alzheimer's disease (AD).

Methods: Human induced pluripotent stem cells (hiPSCs) from a healthy individual and an individual with DS were differentiated into astrocytes.

View Article and Find Full Text PDF

Revealing mitochondrial architecture and functions with single molecule localization microscopy.

Biol Cell

January 2025

CNRS, Univ Rennes, IGDR [(Institut de Génétique et Développement de Rennes)]-UMR 6290, Rennes, France.

Understanding the spatiotemporal organization of components within living systems requires the highest resolution possible. Microscopy approaches that allow for a resolution below 250 nm include electron and super-resolution microscopy (SRM). The latter combines advanced imaging techniques and the optimization of image processing methods.

View Article and Find Full Text PDF

Spatial anti-bunching, in contrast to the well-known bunching behavior observed in classical light sources, describes a situation where photons tend to avoid each other in space, resulting in a reduced probability of detecting two or more photons in proximity. This anti-bunching effect, a hallmark of nonclassical light, signifies a deviation from classical intensity fluctuations and has been observed not only in free electrons and entangled photon pairs but also in chaotic-thermal light. This work investigates the generation mechanism of spatial anti-bunching correlation in random light fields, leveraging the wandering of light centers to induce a second-order coherence degree below unity.

View Article and Find Full Text PDF

Background And Aims: To investigate the feasibility, safety and effectiveness of the ketogenic diet (KD) for super-refractory status epilepticus (SRSE) in the intensive care unit (ICU).

Methods: We conducted a prospective investigation on patients with SRSE treated with the KD. The primary outcome measures were ketosis development as a biomarker of feasibility and resolution of SRSE as effectiveness.

View Article and Find Full Text PDF

Super-Resolved Mapping of Electrochemical Reactivity in Single 3D Catalysts.

Nano Lett

January 2025

Institute of Nanochemistry and Nanobiology, School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, P.R. China.

Crystals with three-dimensional (3D) stereoscopic structures, characterized by diverse shapes, crystallographic planes, and morphologies, represent a significant advancement in catalysis. Differentiating and quantifying the catalytic activity of specific surface facets and sites at the single-particle level is essential for understanding and predicting catalytic performance. This study employs super-resolution radial fluctuations electrogenerated chemiluminescence microscopy (SRRF-ECLM) to achieve high-resolution mapping of electrocatalytic activity on individual 3D CuO crystals, including cubic, octahedral, and truncated octahedral structures.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!