The objective was to determine whether modern Holstein-origin dairy cows, when managed within grassland-based systems, partitioned more feed nitrogen (N) into milk and excreted less in manure, in comparison to an earlier population of Holstein-origin dairy cows. Data used were collated from total diet digestibility studies undertaken in Northern Ireland from 1990 to 2002 (old dataset, n = 538) and from 2005 to 2019 (new dataset, n = 476), respectively. An analysis of variance indicated that cows in the new dataset partitioned a significantly higher proportion of consumed N into milk and excreted a lower proportion in urine and total manure, compared to cows in the old dataset. A second analysis using the linear regression revealed that in comparison to the old dataset, the new dataset had a lower slope in the relationship between N intake and N excretion in urine or total manure, while a higher slope in the relationship between N intake and milk N output. A third analysis used the combined data from both datasets to examine if there was a relationship between experimental year and N utilization efficiency. Across the period from 1990 to 2019, urine N/N intake and manure N/N intake significantly decreased, while milk N/N intake increased. These results indicate that modern Holstein-origin dairy cows utilize consumed N more efficiently than earlier populations. Thus, N excretion is likely to be overestimated if models developed from the old data are used to predict N excretion for modern dairy herds. Therefore, the final part of analysis involved using the new dataset to develop prediction models for N excretion based on N intake and farm level data (milk yield, live weight and dietary N concentration). These updated models can be used to estimate N excretion from modern Holstein-origin dairy cows within grassland-based dairy systems.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.scitotenv.2020.138561 | DOI Listing |
Sci Total Environ
July 2020
Sustainable Agri-Food Sciences Division, Agri-Food and Biosciences Institute, Large Park, Hillsborough, County Down BT26 6DR, United Kingdom. Electronic address:
The objective was to determine whether modern Holstein-origin dairy cows, when managed within grassland-based systems, partitioned more feed nitrogen (N) into milk and excreted less in manure, in comparison to an earlier population of Holstein-origin dairy cows. Data used were collated from total diet digestibility studies undertaken in Northern Ireland from 1990 to 2002 (old dataset, n = 538) and from 2005 to 2019 (new dataset, n = 476), respectively. An analysis of variance indicated that cows in the new dataset partitioned a significantly higher proportion of consumed N into milk and excreted a lower proportion in urine and total manure, compared to cows in the old dataset.
View Article and Find Full Text PDFGenetics
August 2018
Center for Quantitative Genetics and Genomics, Department of Molecular Biology and Genetics, Aarhus University, Denmark.
Domestic animals can serve as model systems of adaptive introgression and their genomic signatures. In part, their usefulness as model systems is due to their well-known histories. Different breeding strategies such as introgression and artificial selection have generated numerous desirable phenotypes and superior performance in domestic animals.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!