Nedd4 is an E3 ubiquitin ligase that has received increased attention due to its role in the maintenance of proteostasis and in cellular stress responses. Investigation of Nedd4 enzymology has revealed a complex enzymatic mechanism that involves intermolecular interactions with upstream E2 conjugating enzymes and with substrates and intramolecular interactions that serve to regulate Nedd4 function. Thus, it is imperative that investigations of Nedd4 enzymology that employ recombinant enzyme be conducted with Nedd4 in its native, untagged form. We report herein an optimized, facile method for purification of recombinant human Nedd4 in its full-length form as a stable and active recombinant enzyme. Specifically, Nedd4 can be purified through a two-step purification which employs glutathione-S-transferase and hexahistidine sequences as orthogonal affinity tags. Proteolytic cleavage of Nedd4 was optimized to enable removal of the affinity tags with TEV protease, providing access to the untagged enzyme in yields of 2-3 mg/L. Additionally, investigation of Nedd4 storage conditions reveal that the enzyme is not stable through freeze-thaw cycles, and storage conditions should be carefully considered for preservation of enzyme stability. Finally, Nedd4 activity was validated through three activity assays which measure ubiquitin chain formation, Nedd4 autoubiquitination, and monoubiquitin consumption, respectively. Comparison of the method described herein with previously reported purification methods reveal that our optimized purification strategy enables access to Nedd4 in fewer chromatographic steps and eliminates reagents and materials that are potentially cost-prohibitive. This method, therefore, is more efficient and provides a more accessible route for purifying recombinant full-length Nedd4.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8494286 | PMC |
http://dx.doi.org/10.1016/j.pep.2020.105649 | DOI Listing |
Eur J Pharmacol
January 2025
Department of Basic Medicine, Institute of Respiratory Diseases Xiamen Medical College, Xiamen Medical College, Xiamen, Fujian 361023, P. R. China; State Key Laboratory of Frigid Zone Cardiovascular Diseases (SKLFZCD), Harbin Medical University, Harbin, Heilongjiang 150081, P. R. China. Electronic address:
ITFG2 is an intracellular protein known to modulate the immune response of T-cells. Our previous investigation revealed that ITFG2 specifically targets ATP5b to regulate ATP energy metabolism and maintain mitochondrial function, thereby protecting the heart from ischemic injury. However, the role of ITFG2 in ischemic ventricular arrhythmias and its underlying mechanisms have not been previously reported.
View Article and Find Full Text PDFMedicina (Kaunas)
January 2025
Department of Biotechnology and Genetic Engineering, Jordan University of Science and Technology, Irbid 22110, Jordan.
: Hypertension (HTN) constitutes a significant global health burden, yet the specific genetic variant responsible for blood pressure regulation remains elusive. This study investigates the genetic basis of hypertension in the Jordanian population, focusing on gene variants related to ion channels and transporters, including , , , , , , , , and . : This research involved 200 hypertensive patients and 224 healthy controls.
View Article and Find Full Text PDFSci Rep
January 2025
Massachusetts General Hospital Cancer Center, Harvard Medical School, Charlestown, MA, 02129, USA.
Genotype-informed anticancer therapies such as BRAF inhibitors can show remarkable clinical efficacy in BRAF-mutant melanoma; however, drug resistance poses a major hurdle to successful cancer treatment. Many resistance events to targeted therapies have been identified, suggesting a complex path to improve therapeutics. Here, we showed the utility of a piggyBac transposon activation mutagenesis screen for the efficient identification of genes that are resistant to BRAF inhibition in melanoma.
View Article and Find Full Text PDFJ Orthop Surg Res
January 2025
Department of Orthopedics, the Affiliated Hospital of Southwest Medical University, Luzhou, 646000, China.
Osteoporosis is a systemic skeletal disorder characterized by reduced bone density and an increased risk of fractures, particularly prevalent in the aging population. Osteoporotic complications, including vertebral compression fractures, hip fractures, and distal forearm fractures, affect over 8.9 million individuals globally, placing a significant economic strain on healthcare systems.
View Article and Find Full Text PDFCirc Res
January 2025
Key Laboratory of Drug Targets and Translational Medicine for Cardio-cerebrovascular Diseases, Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Jiangsu, China (X.T., X.L., X.S., Y. Zhang, Y. Zu, Q.F., L.H., S.S., F.C., L.X., Y.J.).
Background: The decrease in S-nitrosoglutathione reductase (GSNOR) leads to an elevation of S-nitrosylation, thereby exacerbating the progression of cardiomyopathy in response to hemodynamic stress. However, the mechanisms under GSNOR decrease remain unclear. Here, we identify NEDD4 (neuronal precursor cell expressed developmentally downregulated 4) as a novel molecule that plays a crucial role in the pathogenesis of pressure overload-induced cardiac hypertrophy, by modulating GSNOR levels, thereby demonstrating significant therapeutic potential.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!