Transcriptional Regulation of Lipid Catabolism during Seedling Establishment.

Mol Plant

Department of Biology, University of Missouri, St. Louis, MO 63121, USA; Donald Danforth Plant Science Center, St. Louis, MO 63132, USA. Electronic address:

Published: July 2020

Lipid catabolism in germinating seeds provides energy and substrates for initial seedling growth, but how this process is regulated is not well understood. Here, we show that an AT-hook motif-containing nuclear localized (AHL) protein regulates lipid mobilization and fatty acid β-oxidation during seed germination and seedling establishment. AHL4 was identified to directly interact with the lipid mediator phosphatidic acid (PA). Knockout (KO) of AHL4 enhanced, but overexpression (OE) of AHL4 attenuated, triacylglycerol (TAG) degradation and seedling growth. Normal seedling growth of the OE lines was restored by sucrose supplementation to the growth medium. AHL4-OE seedlings displayed decreased expression of genes involved in TAG hydrolysis and fatty acid oxidation, whereas the opposite was observed in AHL4-KOs. These genes contained AHL4-binding cis elements, and AHL4 was shown to bind to the promoter regions of genes encoding the TAG lipases SDP1 and DALL5 and acyl-thioesterase KAT5. These AHL4-DNA interactions were suppressed by PA species that bound to AHL4. These results indicate that AHL4 suppresses lipid catabolism by repressing the expression of specific genes involved in TAG hydrolysis and fatty acid oxidation, and that PA relieves AHL4-mediated suppression and promotes TAG degradation. Thus, AHL4 and PA together regulate lipid degradation during seed germination and seedling establishment.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.molp.2020.04.007DOI Listing

Publication Analysis

Top Keywords

lipid catabolism
12
seedling establishment
12
seedling growth
12
fatty acid
12
seed germination
8
germination seedling
8
tag degradation
8
genes involved
8
involved tag
8
tag hydrolysis
8

Similar Publications

Non-alcoholic fatty liver disease (NAFLD) is a chronic condition characterized by hepatic steatosis in the absence of significant alcohol consumption and is increasingly recognized as the hepatic manifestation of metabolic syndrome (MetS). This review aims to explore the molecular mechanisms underlying the interaction between NAFLD, insulin resistance (IR), and MetS, with a focus on identifying therapeutic targets. A comprehensive review of existing literature on NAFLD, IR, and MetS was conducted.

View Article and Find Full Text PDF

Intestinal epithelial cell NCoR deficiency ameliorates obesity and metabolic syndrome.

Acta Pharm Sin B

December 2024

State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China.

Nuclear receptor corepressor (NCoR1) interacts with various nuclear receptors and regulates the anabolism and catabolism of lipids. An imbalance in lipid/energy homeostasis is also an important factor in obesity and metabolic syndrome development. In this study, we found that the deletion of NCoR1 in intestinal epithelial cells (IECs) mainly activated the nuclear receptor PPAR and attenuated metabolic syndrome by stimulating thermogenesis.

View Article and Find Full Text PDF

Objectives: To investigate the effect of pachymic acid on brown/beige adipocyte differentiation and lipid metabolism in preadipocytes 3T3-L1 MBX.

Methods: The brown cocktail method was employed to induce 3T3-L1 MBX cells to differentiate into beige adipocytes. The impact of pachymic acid on the viability of 3T3-L1 MBX preadipocytes was evaluated using the CCK-8 assay.

View Article and Find Full Text PDF

Design, evaluation, and in vitro-in vivo correlation of self-nanoemulsifying drug delivery systems to improve the oral absorption of exenatide.

J Control Release

January 2025

Department of Pharmacy, University of Copenhagen, Universitetsparken 2, Copenhagen 2100, Denmark; Bioneer A/S, Kogle Allé 2, Hørsholm 2970, Denmark. Electronic address:

The ability to predict the absorption of exenatide (Ex), a GLP-1 analogue, after oral dosing to rats in self-nanoemulsifying drug delivery systems (SNEDDS), using in vitro methods, was assessed. Ex was complexed with soybean phosphatidylcholine (SPC) prior to loading into SNEDDS. A design of experiments (DoE) approach was employed to develop SNEDDS incorporating medium-chain triglycerides (MCT), medium-chain mono- and diglycerides (MGDG), Kolliphor® RH40, and monoacyl phosphatidylcholine.

View Article and Find Full Text PDF

Microglia modulate their cell state in response to various stimuli. Changes to cellular lipids often accompany shifts in microglial cell state, but the functional significance of these metabolic changes remains poorly understood. In human induced pluripotent stem cell-derived microglia, we observed that both extrinsic activation (by lipopolysaccharide treatment) and intrinsic triggers (the Alzheimer's disease-associated genotype) result in accumulation of triglyceride-rich lipid droplets.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!